HI i RRRRERRAPEAR] jk
A

i EEREEERARE
PRAPRARPARAR e AT
UL[PRRPRRRERRAP |~ A o i [FARPFARREALE| I U

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Telecommunications and Telematics

Design and Implementation of
Distributed Applications in
Ad Hoc Network Environment

Master’s Thesis

Baldzs Kovacs

Advisors:

Miklos Aurél Ronai
M.Sc., Ericsson Research, Traffic Lab

Zoltan Richard Turanyi
M.Sc., Ericsson Research, Traffic Lab

Robert Szabo
Ph.D., Budapest University of Technology and Economics

Budapest, 2003.

Nyilatkozat

Alulirott Kovacs Balazs, a Budapesti Miiszaki és Gazdasagtudoméanyi Egyetem hallgatoja
kijelentem, hogy ezt a diplomatervet meg nem engedett segitség nélkiil, sajat magam
készitettem, és a diplomatervben csak a megadott forrasokat hasznaltam fel. Minden olyan
részt, melyet sz6 szerint, vagy azonos értelemben de atfogalmazva mas forrasbol atvettem,
egyértelmiien, a forras megadéasaval megjeloltem.

Budapest, 2003. majus
Kovacs Baléazs

Kivonat

Manapsag az ad hoc halézatok népszert kutatési teriiletnek szamitanak. Léteznek olyan
technolégiak, melyek lehet6vé teszik mobil eszk6zok szaméra a kozponti feliigyelet nélkiili
ad hoc hélézatok kialakitasat. Folyamatosan tagul azoknak az eszkézoknek a kore, melyek
képesek ilyen jellegii halozat kialakitasara. Mivel a digitélis személy asszisztensek (PDA) és
mobiltelefonok képességei egyre inkabb fejlédnek, eme eszkdzok is alkalmasak arra, hogy
részt vegyenek egy ad hoc halézat kialakitdsidban. Nemcsak kis méretiik vonzo, segit-
ségiikkel az emberek barhol konzisztensen hozzaférhetnek személyes adataikhoz. Ugyan-
akkor a hordozhaté eszkozoknek egyik nagy hétranya éppen a kis méretiikb6l adodik.

Felmeriilt az igény, hogy hagyoményos méretii periféridkat csatlakoztathassunk a hor-
dozhatoé eszkozokhoz, példaul egy kényelmes billentytizetet, egeret, vagy egy élvezhetd
méretii megjelenitét, valamint hogy kiegészitsiik képességeiket kiilsg szolgaltatasok segit-
ségével, példaul egy nyomtatdval. A hordozhatd eszkozoket kiilonbozs célokra tervezték
és ezért kiilonboz6 képességbeli korlatokkal rendelkeznek. A dinamikus architekturaja
halézatok és az ezekben résztvevs valtozatos eszkozok nehézkessé teszik az ad hoc haléza-
tokra torténd alkalmazés-fejlesztést, mivel a hélézati erdforrdsok és szolgaltatisok elére
nem ismertek.

Két lehetGség meriil fel ennek a problémanak a megoldasara. Az egyik, hogy az eszkdzok
képességeihez kell forméalni alkalmazasainkat és igy sok kiilonb6z6 valtozatot kell késziteni.
A masik lehet6ség egy middleware kifejlesztése, mely képes az eszkozok hidnyzo képességeit
kiegésziteni mas eszkozok szolgaltatasaival. Igy az alkalmazés-fejlesztok szamara lehetGség
nyilna, hogy statikusan jeloljék meg alkalmazésaik eréforrasigényeit a middleware felett,
és ezen igények késébb dinamikusan OsszerendelhetGek lennének a szolgéaltatasokkal.

A Blown-up middleware technologia eme probléma megoldasara sziiletett. Nemcsak le-
egyszertsiti az ad hoc halézatokra torténs alkalmazés-fejlesztést, hanem lehetévé teszi a
felhasznalok szamara, hogy igénybevegyék a Blown-up alkalmazéasokat tin. kapcsolatrend-
szerekben, és ezzel kialakitsak sajat személyi halozataikat.

Diplomamunkdmban bemutatom a szamitastechnika egy teriiletét, a pervasive vagy ubi-
quitous computing-ot, és megmutatom, hogy a Blown-up elosztott szolgaltatas elérési tech-
nologiat hogyan lehet beilleszteni eme elképzelésekbe, mik azok a problémék melyek a
Blown-uppal megoldhatéva valnak. Bemutatom a middleware-hez <alam megvaldsitott
els¢ alkalmazasokat és a segitségiikkel kialakithatd kapcsolatrendszert. Szintén bemuta-
tok egy altalam készitett vezérlg alkalmazast és annak grafikus felhasznéldi feliiletét mely
lehet6éveé teszi a Blown-up kapcsolatrendszerek egyszerii szervezését. A megvalositott al-
kalmazasok mindegyike a Blown-up Micronet Protocol programozéi feliiletét hasznéalja. A
diplomamunkaban kiemelem a Blown-up elényeit és azon jellemz6it, melyek tovabbi fej-
lesztést igényelnek ahhoz, hogy a middleware teljesebb és még hasznalhatobb legyen.

Abstract

Nowadays, ad hoc networks are an emerging field of research. There are existing network
technologies that enable mobile devices to form an ad hoc network without centralized
administration. The set of devices that are capable of being involved in such a network is
expanding. However, most of these devices are likely to be small handhelds, like Personal
Digital Assistants (PDA) or cellular phones, as their capabilities are continuously making
progress. Compact size is not the only attractive characteristic of handhelds, with the help
of handhelds, people can also keep their personal data nearby, and access them consistently
any time. The only handicap of handheld devices arises from their small size, namely that
they have small data input (e.g. keyboard or mouse) and output (display) interface.

To avoid the problems of small size, a claim emerged to attach normally-sized peripheral
devices to handhelds like a comfortable keyboard, mouse, a display of enjoyable size, or
to complete their capabilities by connecting them to standalone services, for example to a
printer. Handheld devices may be designed for different special operations with different
capability restrictions. Overall, we can say that application development over such a highly
dynamic network or device architecture is complicated, because available network services
are not foreseeable.

Two opportunities arise to solve this problem. The first one is to make our applications
adapt to device capabilities, thus, creating more versions. The other one is to develop
some kind of a middleware that is able to assign missing device capabilities to other devices
that have the requested capability. Hence, application developers could be able to register
static resource requests over this middleware, and later these requests could be dynamically
connected to the service provider devices in the ad hoc network.

Blown-up technology has been developed by following the latter guideline. This middleware
not only aims simplifying application development over the scenario described above, but
also makes the Blown-up enabled applications available for users in set of sessions, thus
allowing people to create their own Personal Area Networks (PAN) over ad hoc networks.

In my thesis I introduce a field of computer technology, called pervasive or ubiquitous
computing and trace how the Blown-up distributed service access technology can be fit into
these visions, and what the problems are that can be solved by Blown-up. I present the first
applications I implemented for this middleware and demonstrate a session with the help
of these applications. I also present a control application and its graphical user interface
through which, users are able to manage the sessions of Blown-up easily. Each of the
implemented applications use the Blown-up Micronet Protocol application programming
interface (API). I illustrate the advantages of Blown-up and those features that may need
correction or further development, in order to make this middleware more useful.

Acknowledgements

I would like to thank all my colleagues for their support, especially for Gergely Biczok,
Kristof Fodor and Agoston Szabé.

Special thanks to Miklos Ronai (Hawai), who have supported me and my colleagues in the
last two years sparing no pains and time. I would also specially thank to Andras Valkd
and Zoltan Turanyi for their precious help.

I would like to thank my family for supporting me especially in the last five years.

I would like to thank M6éni who stood by me all the time.

Contents

1 Introduction

1.1 Mark Weiser’s Vision
1.2 Expectations and Challenges . . .
1.3 A Vision Scenario
1.4 Structure of the Thesis

2 Related Work

2.1 OXygen
2.2 Portolano
2.3 System Support for Pervasive Environments
2.4 Problem Statement

3 The Blown-up Middleware

3.1 Goals and Assumptions L Lo
3.2 System Architecture and Protocol Stack
3.2.1 Overview of the Protocol Stack
3.22 UserPlane
3.23 Control Plane

3.3 Application Programming Interface

4 Applications for BUMP

10

10

14

19

22

24

25

28

30

32

34

36

40

4.1 Blown-up User Applications .

4.1.1 File Access Serviceo
4.1.2 MP3 Service
4.1.3 Summary of BUMP User Plane
4.2 Control Application
421 Back-end
422 Front-end
4.2.3 Summary of BUMP Control Plane

5 Analysis of BUMP

6 Conclusion

A API Functions and Structures
A.1 Description of API Functions

A2 Description of API Structures

II

60

63

65

List of Abbreviations

ACK - Acknowledgement

AFS — Andrew File System

AODV - Ad hoc On-demand Distance Vector

API — Application Programming Interface

BUMP - Blown-Up Micronet Protocol

BUMPC — BUMP controller

CA - Control Application

CAC - Context Aware Computing

CORBA — Common Object Request Broker Architecture
CSMACA - Carrier Sense Multiple Access with Collision Avoidance
DFS — Distributed File System

DSDV - Destination-Sequenced Distance Vector

DSR - Dynamic Source Routing

E21 — Enviro21

FTP - File Transfer Protocol

GUI — Graphical User Interface

H21 — Handy21

HAVi — Home Audio Video Interoperability

IC — Integrated Circuit

IDL — Interface Description Language

IEEE - Institute of Electrical and Electronics Engineers
IP — Internet Protocol

MAC — Medium Access Control NFS — Network File System

II1

N21 — Network21

PAN — Personal Area Network

PDA — Personal Digital Assistant

QoS — Quality of Service

RDP — Resource Discovery Protocol

RF — Radio Frequency

RMI - Remote Method Invocation

RPC - Remote Procedure Call

RSVP — Resource Reservation Protocol

SDL — Specification Description Language
SLP — Service Location Protocol

TAP — Transport Access Point

TCL/TK — Tool Command Language/ToolKit
TCP — Transmission Control Protocol

TORA — Temporally-Ordered Routing Algorithm
TP — Transport

UDP — User Datagram Protocol

UI — User Interface

WLAN — Wireless Local Area Network

XML — Extensible Markup Language

v

List of Figures

1.1

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

Fred’s presentation 7

Oxygen technologies 11

System support principles for pervasive applications [GRIMM et al.01] . . . 21

Working easy 26
Time to play! 26
Play against each other 27
System architecture [TDK2002| 28
World seen by applications [TDK2002] 29
BUMP layer structure [TDK2002] 31
Implemented session 41
User interface of the file service client 44
User interface of the mp3 service client 46
UML diagram o1
Class AppPIN 52

4.6

4.7

4.8

4.9

4.10

Class ACtiveSesSIOon v v v v v v e e e e e 54

Device, application and pin lookup on GUI 56
Creating a session, step 1 57
Creating a session, step 2 58
Session lookup and delete 59

VI

Chapter 1

Introduction

Nowadays cellular phones, Personal Digital Assistants (PDA) are increasingly spreading.
The capabilities of these devices are continuously making progress, slowly approaching the
capabilities of a real personal computer. On the other hand almost all of them fit into a coat
pocket, hence we like to use them. They not only take advantage due to their small sizes,
but we can also keep our files or works near to ourselves, and regardless of the place of the
usage they stay consistent. Unfortunately the major disadvantage of handhelds comes from
their major advantage: the small size. Feeding data into these devices generally happens
through a tiny keyboard or some touchpad, while graphical data output also appears on a

small-sized display.

A claim emerges to connect ordinary large-sized data input, or displaying devices like a
simple PC keyboard or PC display to these small devices such as PDAs, cellular phones.
Today there are technologies available solving the communication between small devices
and their peripheral devices, such a technology is Bluetooth. If we re-think the problem not
only simple peripheral devices can be connected to mobile devices. Drafting up universally,
services are needed to be connected to other services. Services that run over some kind
of hardware (e.g., keyboard, mouse, display) and are able to communicate with the other

service using it on a different hardware (e.g., chess game on a PDA).

The mobile devices mentioned above form an ad hoc network, which has a frequently

changing architecture: resources and devices come and go. However, application developers

CHAPTER 1. INTRODUCTION 2

need static resources onto which they can build their programs. In case of a single computer
or a statically linked network, developers can create applications that use the resources
available on that architecture. In an ad hoc network they can not make the assumptions on
certain capabilities, but they can require the presence of them. That is why services can be
also connected to other services. Let us assume that we get into a small-ranged Personal
Area Network (PAN) consisting of devices with limited capabilities. It can happen that
we can use a service only if another service is also available in the network. For example
we want to play with a chess game running on a very simple hardware. To start playing,
it needs a keyboard service for data input and a display service for graphical output. So
before we can use the chess service, we have to find services in the network that meet the
requirements of the chess game. If we manage to create this connection system, a new

session can be created which can become part of our personal network.

Blown up concept [TDK2002| was developed to hide the dynamic architecture of an ad
hoc network from application developers. Blown up concept uses the Blown-up Micronet
Protocol (BUMP) [Fodor2003] to handle connection systems of services. In my thesis I am
going to discuss how to create applications which are able to present the abilities of the
Blown-up concept by means of the Application Programming Interface (API) of BUMP.
Before T discuss these applications I summarize the background field of Blown-up concept,
the ubiquitous or pervasive computing and trace how Blown-up concept can be fit into

these quite abstract visions.

1.1 Mark Weiser’s Vision

The principles of ubiquitous computing were first drafted by Mark Weiser. He described
his vision about the computer of the 21st century in an article [Weiser91] published in
1991. He states that information technology should become a natural part of people’s
everyday lives, usage of devices should be just as evident as, for example, reading. When
you read a sign on the street you absorb its information without consciously performing
the act of reading. In his opinion "the most profound technologies are those that disappear.
They weave themselves into the fabric of our everyday life until they are indistinguishable

from it.” His conception is the opposite of the paradigm of virtual reality, since the latter

CHAPTER 1. INTRODUCTION 3

focuses an enormous apparatus on simulating the world rather than on invisibly enhancing
the world that already exists. In his opinion wbiquitous computing should explore quite
different ground from the idea that computers should be autonomous agents that take on
our goals [Weiser93|. To characterize the difference he describes an example. Suppose you
want to lift a heavy object. You can call in your strong assistant to lift it for you, or you
can have yourself made effortlessly, unconsciously, stronger and just lift it. There are times
when both are good. Much of the past and current effort for better computers has been
aimed at the former; ubiquitous computing aims at the latter. The point is: by the help
of ubiquitous computing we could focus on tasks but not on the tool. There has been a big
need for developments in the field of mobile computing to actually realize Mark Weiser’s

conception. Ubiquitous computing needs:

e cheap and low power consumption hardware
e some kind of network to connect the devices

e software elements that support distributed operation

At the time he wrote his article the technology needed to implement a system based
on his ideas did not yet exist. In the recent decade information technology has come a
long way. Cheaper and more powerful hardware, intelligent software elements, faster and
mobile networks, and a great number of scientific achievements makes possible to materi-
alize Weiser’s idea. These include the use of fiber optics in data transmission [Gilder93],
that provides almost limitless bandwidth, the evolution of human voice controlled systems
[Tatai97, OGN92| (which is needed for new generation user interfaces) and the break-
through in image processing [RC93]. Nowadays research based on wireless ad hoc networks
are of great interest. Through these researches new technologies are discovered that can
be used in the realization of ubiquitous computing . Various radio interface technologies
were developed for supporting communication: IEEE 802.11 [WLAN99|, HiperLAN and
HiperLAN2 [HLANZ2| and Bluetooth [JH98, BBSpec|. 802.11 uses CSMA/CA (Carrier
Sense Multiple Access with Collision Avoidance) [Karn90] in ad hoc mode. There are also
various routing algorithms like AODV (Ad hoc On-demand Distance Vector), DSR (Dy-
namic Source Routing) [DPR00], DSDV (Destination Sequenced Distance Vector) [PB94|
and TORA (Temporarily Ordered Routing Algorithm) [PC97, BMJHJ98|

CHAPTER 1. INTRODUCTION 4

In his articles Mark Weiser named this new field of computer science ubiquitous comput-
ing. However, recent documents refer to the same subject as pervasive computing, which
naming comes from researchers of IBM. The connection between these two expressions is
often mentioned and there are also articles dealing with the matter [McCrory00|. Some
consider the two expressions as synonyms, pervasive computing is simply a new name of
ubiquitous computing. Others think that the two expressions mean quite the same with
some differences: pervasive computing involves devices like handhelds - small, easy-to-use
devices - through which people will be able to get information on anything and everything
(e.g. surfing on the Internet using a cellular phone), while the goal of ubiquitous computing
is to hide computers everywhere into the background. In recent documents there is also
another name for this field of computer science - invisible computing. In this document I

consider these expressions as synonyms of each other.

1.2 Expectations and Challenges

I examine the challenges of pervasive computing based on M. Satyarayanan’s article [Satya01]
and discuss what relations pervasive computing has with distributed systems and mobile

computing.

The field of distributed system arose at the intersection of personal computers and local
area networks. The research created a conceptual framework and algorithmic base that has
proven to be a value in all work involving two or more computers connected by a network.
This body of knowledge spans many areas that are foundational to pervasive computing.
Technologies based on distributed systems support remote and safe communication, fault

tolerance, high availability and remote information access.

The appearance of laptop computers and wireless local area networks in the early 90’s led
researchers to confront the problems that arise in distributed systems with mobile clients.
They made new, and modified existing network technologies (Mobile IP [BPT96], ad hoc
protocols [BMJHJ98], TCP for wireless networks [BSAK95]), labored mobile information
access algorithms, adaptive applications (proxies), system-level energy saving techniques

and location aware system behavior to solve these problems.

CHAPTER 1. INTRODUCTION 5)

The main goal of pervasive computing is to create a technology that can invisibly assimilate
into our everyday lives. Since motion is an integral part of our lives pervasive computing
must support mobility, otherwise a user will be aware of the technology when he moves.
Hence the research agenda of pervasive computing incorporates four additional research

thrusts.

The first is the usage and integration of smart spaces. Smart spaces are intelligent computer
systems installed in common buildings, rooms, etc. When used efficiently, smart spaces are
e.g. able to control the buildings features like heating and lighting of rooms according to
the people’s position and actions. In another point of view in smart spaces a software on a

user’s computer may behave differently depending on where the user is currently located.

The second is invisibility - according to the vision of Mark Weiser pervasive computing has
got to exclude consciousness from the operation. In practice, a reasonable approximation to
this ideal is minimized user distraction. If a pervasive computing environment continuously
meets user expectations and rarely presents a user with surprises it allows interaction nearly

on subconscious level.

The third is local scalability - as the size of a smart space grows the number of participating
devices and hence the number of interactions between the user and the surrounding entities
increase. This can lead to lack of bandwidth, more power consumption and inconvenience
for the users. The presence of multiple users will further complicate the problem. Previous
works on scalability ignored physical distance - a web server should handle as many clients
as possible regardless of whether they are located next door or across the country. In
pervasive computing the number of interactions should decrease if the distance between
the user and the smart space increases otherwise the system will be overwhelmed with
interactions of little relevance. It is also important to allow users to send requests to a

smart space from thousands of kilometers away.

The last one is the ability of masking areas with uneven conditions. The penetration
of ubiquitous computing is dependent of many non-technical factors like organizational
structure, economics and business models. Uniform penetration, if ever achieved, is many
years or decades away. Hence the difference between the "smartness" of different areas

will be huge. There surely will be places e.g. offices and buildings with more modern

CHAPTER 1. INTRODUCTION 6

equipment than others. These differences can be jarring to a user, which contradicts the
goal of creating an invisible computing infrastructure. One way to reduce the amount
of variation seen by a user is to have his or her personal computing space for "dumb"
environments. As a trivial example, a system that is capable of disconnected operation
is able to mask the absence of wireless coverage in its environment. The main arising

problems of development and realization of a pervasive system are:

e tracking user intentions;
e exploiting wired infrastructure to relieve mobile devices;

e adaptation strategies: applications must adapt to the needs of the system and the

system must be able to adapt to the needs of the applications as well (QoS);
e high level energy management, physical and performance planning;
e context awareness;
e balance between proactivity and invisibility;

e security and authentication.

1.3 A Vision Scenario

After having known the base idea and research thrusts of ubiquitous computing 1 draft a
vision scenario for better understand of the opportunities resided in such kind of human

centered technology.

Fred is in his office, preparing for a meeting at which he will give a presentation and a
software demonstration. The meeting room is a ten-minute walk across campus. It is time
to leave, but Fred is not quite ready. He grabs his wireless handheld computer and walks
out of the door. The ubiquitous system transfers the state of his work from his desktop to
his handheld, and allows him to make his final edits using voice commands during his walk.
The system infers where Fred is going from his calendar and the campus location tracking

service. It downloads the presentation and the demonstration software to the projection

CHAPTER 1. INTRODUCTION 7

computer, and warms up the projector. Fred finishes his edits just before he enters the
meeting room. All of the devices in the meeting room could be Blown-up enabled. The
projector offers a projection service the laptop has a keyboard service while Fred’s PDA
runs a slide show service. The slide show application needs a projection service and a
keyboard service to run. When Fred arrives into the range of the projector and the laptop,
he selects the two services mentioned above and connects them to his PDA’s slide show
service. So Fred displays his slides using the projector while his work remains on his PDA
and uses the keyboard of the laptop to switch the slides. As the presentation proceeds,
Fred is about to display a slide with highly sensitive budget information. The system
senses that this might be a mistake: the room’s face detection and recognition capability
indicates that there are some unfamiliar faces present. It therefore warns Fred. Realizing
that perceptual technology is right, Fred skips the slide. He moves on to other topics and
ends on a high note, leaving the audience impressed by his polished presentation. Figure:

1.1.

Campus location

tracking Work-on-the-
flow support

L

=

—

— -
—
===l

I : < > !

—]

Frad's office LI | Fveeting room
Destination . | Projector
\ lookup Wa_rm up
projector

Transfer Fred's I
work
PDA

Figure 1.1: Fred’s presentation

This vision scenario comes from the researchers of Aura, one of the projects that has been
destined to develop a pervasive system. The scenario describes an inter-campus information
and collaboration system that aims people working time efficiently. As it can be seen the
Blown-up concept could be fit into the example that shows where Blown-up could be used

in a ubiquitous vision. However Blown-up needs more user interaction that a pervasive

CHAPTER 1. INTRODUCTION 8

system should afford, next generation user interfaces could also minimize Blown-up’s user

distraction.

Ubiquitous computing will be a fertile ground for research in the next decades. A lot of
new scientific results are needed in many areas, even in those that are not closely related to
computer systems, if they are intended to transform a dream to reality. These areas include
human-computer interactions (specifically focusing on the variety of interfaces and human-
centered hardware design), software agents (with paying attention to high-level proactive
behavior) and artificial intelligence (concentrating on decision-making and planning). The
capabilities originating from these areas should be integrated into the future systems that
are able to fulfill the four major requirements mentioned earlier in this document. So,
pervasive computing comes to existence as an integration of results achieved in a number

of separate fields of science.

1.4 Structure of the Thesis

In the last few years many project has been started to make this computing dream or
part of the dream into reality. I am going to discuss two of them in the next chapter: the
Oxygen and Portolano project. I describe their visions, thoughts, their realization ideas,
and then, through these I point to what system support is needed to build applications

over a pervasive environment.

In the third chapter I introduce the Blown-up middleware. I present its goals, the architec-
ture that makes realizable the goals. T will also describe the protocol stack in a simplified
manner. As my task was on focusing Blown-up applications I avoided writing down the
unnecessary details that are not important in terms of application developing. At the end

of the chapter application programming interface will be described.

The fourth chapter is about the applications and sessions I have implemented. I introduce
the user applications that can form Blown-up sessions, and the control application that
can set up and tear down these sessions. I also summarize the advantages of BUMP in

terms of application developing.

CHAPTER 1. INTRODUCTION 9

In the fifth chapter I summarize my experience of Blown-up. I write down those features
that needs implementation into BUMP, and those missing features that should be designed

to make Blown-up more useful. I also describe the possible future works.

In the sixth chapter I summarize my thesis and the achievements.

Chapter 2

Related Work

In the following I will introduce some ongoing projects in the field of ubiquitous computing.

2.1 Oxygen

Oxygen is a project on human-centered computing started at MIT supported by DARPA
and Oxygen Alliance [Oxygen02]. Oxygen enables pervasive, human-centered computing
through a combination of specific user and system technologies. Oxygen’s user tech-
nologies directly address human needs. With the help of speech and wvisual technologies
the user can communicate with Oxygen like communicating with a real person and this
way they can save a lot of energy and time. Automaton, individualized knowledge access,
and collaboration technologies help users perform a wide variety of tasks what they want

to do in the ways they like to do them.

Automation technologies offer natural, easy-to-use, customizable, and adaptive mechanisms
for automating and tuning repetitive information and control tasks. For example, they al-
low users to create scripts that control devices such as doors or heating systems according
to their tastes. Collaboration technologies enable the formation of spontaneous collab-
orative regions that accommodate the needs of highly mobile people and computations.
They also provide support for recording and archiving speech and video fragments from

meetings, and for linking these fragments to issues, summaries, keywords, and annotations.

CHAPTER 2. RELATED WORK 11

Knowledge access technologies offer access to information, customized to the needs of peo-
ple, applications, and software systems. They allow users to access their own knowledge

bases, the knowledge bases of friends and associates.

System technologies provides location-independent applicability of user technologies,
they can be used at home, in the office or on the move. The Oxygen technologies work

together and pay attention to several important themes, figure: 2.1:

Distribution and mobility - for people, resources, and services.

Semantic content - what we mean, not just what we say.

Adaptation and change - essential features of an increasingly dynamic world.

Information personalities - the privacy, security, and form of our individual interac-

tions with Oxygen.

USER TECHNOLOGIES

Speech and Vision
Knowledge Access
Automation
Collaboration

SYSTEM TECHNOLOGIES

OXYGEN ATTRIBUTES

Intelligent Environments
Mobile Devices
Dynamic Networks
Software Architecture
Privacy and Security

Distribution and Mobility
Semantic Content
Adaptation and Change
Information Personalitites

Figure 2.1: Oxygen technologies

People access Oxygen through stationary devices (E21s) embedded in the environment or

via portable hand-held devices (H21s). These universally accessible devices supply power

CHAPTER 2. RELATED WORK 12

for computation, communication, and perception. Embedded in offices, buildings, homes,
and vehicles, E21s enable users to create intelligent environments by placing situated
entities, often linked to local sensors and actuators, that perform various functions on
their behalf, even in their absence. For example, a user can create entities and situate
them to monitor and change the temperature of a room. H21s can accept speech and
visual input, they can reconfigure themselves to support multiple communication protocols
or to perform wide variety of functions. Among other things, H21s can serve as cellular
phones, beepers, radios, televisions, geographical positioning systems, cameras, or personal
digital assistants, thereby reducing the number of special-purpose gadgets we must carry.

To conserve power, they may offload communication and computation onto nearby E21s.

Universally available network connectivity and computational power enable decentralized
Oxygen components to perform tasks by communicating and cooperating as much as hu-
mans do in organizations. Components can be delegated to find resources, to link them
together in useful ways, to monitor their progress, and to respond to change. N21 networks
support dynamically changing configurations of self-identifying mobile and stationary de-
vices. N21s allow people to identify devices and services by how they intend to use them,
not just by where they are located. Oxygen networks enable users to access the information
and services they need, securely and privately, so that people can be comfortable integrating
Oxygen into their personal lives. N21s support multiple protocols for low-power commu-
nication. The software architecture matches current user goals with currently available
software services, configuring those services to achieve the desired goals. When necessary,
it adapts the resulting configurations to changes in goals, available services, or operat-
ing conditions. Thereby, it relieves users of the burden of directing and monitoring the

operation of the system as it accomplishes its goals.

As we can see the Oxygen project lines up many cooperative technologies to be integrated
in a pervasive environment. Let us see how a business conference would be organized by
Oxygen in the scenario follows. Helene calls Ralph in New York from their company’s
home office in Paris. Ralph’s E21, connected to his phone, recognizes Helene’s telephone
number; it answers in her native French, reports that Ralph is away on vacation, and asks
if her call is urgent. The E21’s multilingual speech and automation systems, which Ralph

has scripted to handle urgent calls from people such as Helene, recognize a previously

CHAPTER 2. RELATED WORK 13

agreed word in Helene’s reply and transfer the call to Ralph’s H21 in his hotel. When
Ralph speaks with Helene, he decides to bring George, now at home in London, into the
conversation. All three decide to meet next week in Paris. Conversing with their E21s,
they ask their automated calendars to compare their schedules and check the availability
of flights from New York and London to Paris. Next Tuesday at 1lam looks good. All

three say "OK”, and their automation systems make the necessary reservations.

In the above I drafted what kind of technologies and devices Oxygen focuses on. In the
followings I summarize the system technologies and their objects needed to accomplish the

proposed goals of Oxygen.

e An integrated visualization and speech system that uses cameras and microphone
arrays is required to track a speaker’s location and arm position extract the speaker’s
voice from background noise and respond to a combination of pointing gestures and
spoken commands such as "Move that one over here” or "Show me the video on that

screen”.

e Systems that integrate software services to accomplish user-defined tasks are needed.
For example, a smart room equipped with embedded speech, video, and motion
detectors automatically records and recalls key meeting events, monitoring and re-
sponding to visual and auditory cues that flow naturally from normal interactions

among group members.

e A computer-aided design tool is needful that understands simple mechanical devices
as they are sketched on whiteboards or tablets. Liberated from mice, menus, and
icons, users can draw, simulate, modify, and test design elements in the same way

they would with an expert designer.

e Location and resource discovery systems enable users to access computers, printers,
and remote services by describing what they want to do rather than by remembering
computer-coded addresses. Low-cost ceiling-mounted beacons enable mobile users
to determine where they are indoors, without having to reveal their location. These
integrated systems respond to user commands such as "Print this picture on the

nearest color printer”.

CHAPTER 2. RELATED WORK 14

e A secure, self-configuring, decentralized wireless network is required that enables
mobile users to communicate spontaneously using handheld devices and to share
information with one another, utilizing multiple network protocols without requiring

additional access points or intervention from service providers.

e Hardware and software architectures that determine and implement the best allo-
cation of resources should be useful for streaming multimedia applications. These
architectures optimize computer utilization and the use of power, thereby boosting
the performance and lowering the cost of wireless handheld devices that link mobile

users to Oxygen networks.

2.2 Portolano

For better overview of the technical challenges needed to fulfill the requirements raised
by ubiquitous computing, I examine the realization ideas of the researchers of Portolano

Project at University of Washington [EHAB99.

In a pervasive environment people would be surrounded by computing appliances, but
the interactions should occur smoothly and easily. This can be achieved by developing
universal user interface (UI) for services. Certainly there are many issues in Ul evolution,

but among these two are especially important.

In a ubiquitous environment there will be services that must be used location indepen-
dently. No matter people are home or on the move they should be presented a front-end
that is appropriate to the capabilities of the device on that they are using the service. For
example somebody should be presented with a usable newspaper on a home display or
on his PDA’s screen or he should be able to complete tasks from many kind of devices.
So the first challenge is handling multiple interfaces, access points to distributed services.
A solution for this problem is a method to allow mobile clients to discover the semantics
of any service’s Ul and present an interface suited to the client’s size, shape, abilities, or
resource limitations. Research toward this goal is already underway. A first attempt was
Interface Description Language (IDLs). IDLs describe abstract Ul semantics via a hierar-

chical set of types. More recently, IDLs have been superseded by a scheme built on top of

CHAPTER 2. RELATED WORK 15

the extensible markup language (XML). An other interesting research effort is the VoxML
markup language from Motorola. VoxML allows the integration of speech interfaces for
interaction with web content through simulated dialogs. Markup languages are an enabling
technology, but as good as XML is at describing the semantics and content of a document,
it will not be enough. Probably an appropriate solution would be a mobile multi-interface
environment. This line of arguments suggest a need for advanced development environ-
ments that allow developers to create new user interfaces while re-using much of the code

of the back-end of the application.

The second important interface issue is creating inwvisible interfaces. These kind of inter-
faces would be able to implicitly take their direction from people’s behavior instead of
giving explicit commands. UI should be made fit so well in an environment that a user
will not be aware of interacting with a computing device. One potential part of invisible
computing research is context aware computing (CAC). CAC attempts to merge know-
ledge of the user’s task, emotions, location, and attention with other available data such
as the time and knowledge about other users. The CAC field is in a quite beginner phase,
but already groups are exploring it with projects such as Georgia Tech’s CyberDesk and
the spatial location work at AT&T Laboratories Cambridge and Xerox PARC. In order to
infer intentions data must be fused from a variety of sensors and databases in a timely and

efficient manner.

Distributed services should be in the core of researches. User must be provided with
services to which they can easily relate. For example, somebody may call on several
different services to operate on his data e.g. to store his photos, to view them as a web-
based photoalbum or to display them somewhere based on conditions of other services.
The user does not concern himself with the technical specifications nor the file format

conversions.

The current infrastructure-centric focus has led to system architectures that are vertically
integrated, not horizontally layered. By vertical researchers mean systems that attempt to
provide entire solutions to a problem ("take it or leave it”). Traditionally, these solutions
suffer from high-cost and inflexibility (e.g. the inability to get information to and from

users who do not subscribe to the same service). Although administration and regulation

CHAPTER 2. RELATED WORK 16

can be centralized, vertical systems often make it difficult or even impossible for a user to
get the subset of services he requires. Furthermore, vertical systems make it difficult to
quickly deploy new or alternative services. Researchers argue that horizontal layering is
much more appropriate for the mobile networks of the future. If a user desires to migrate
to a new service or even use the same service with different options it should be possible

for him to easily do so.

Tasks performed by users of a pervasive computing environment require the unintentional
use of a variety of distributed services. Instead of explicitly communicating with each
service, agents should perform tasks which are not directly related and are in behalf of
users. Technologies and protocols used to implement agents should be able to handle
mobile applications in environments with widely distributed data sources and intermittent
connectivity. Of particular importance will be an active networking structure allowing the

flexible integration of applets and servlets.

Another essential feature of a pervasive environment should be the smooth integration
of new services. Installations and service set ups should occur seamlessly. Similarly, a
new hardware component must be able to setup itself and its connection without the
explicit involvement of a network provider. In the current model, significant configuration
is required for new devices such as wireless phones. Deploying services effectively also
necessitates new distribution and maintenance models. In current systems, users often
feel overwhelmed from always having to upgrade their systems with new enhancements,
bug fixes, and security patches. Although the user must certainly be kept in the loop
about major issues, the day to day maintenance should be the responsibility of the service
or subscription provider. This model implies the creation of an architecture supporting
dynamic upgrading and hot-swapping of system components. Indeed, many vendors are
already addressing this issue. For example, web browsers and multimedia playback tools
often come equipped with these autoupdate abilities in order to simplify supporting new
codecs and data formats. The challenge will be to implement similar techniques in the

mobile domain while spanning heterogeneous hardware and connectivity situations.

Resource discovery is the subject of numerous research efforts including the RDP and

SLP protocols, Berkeley’s Service Discovery Service, Sun Microsystems’ JavaSpaces and

CHAPTER 2. RELATED WORK 17

Jini, T-Spaces from IBM, Universal Plug and Play from Microsoft, and the HAVi consumer
electronics consortium. Each takes a slightly different approach based on the application
domain they were intended for. None were designed specifically with mobile networks
in mind, so a host of questions should be re-considered in this new context. It is also
important that any discovery systems to be implemented should be selfmanaging since
both clients and resources (including the lookup registry) are likely to change as devices
are disconnected and reconnected. Due to intermittent connections and ad hoc networks,
data may have to find services on its own without the assistance of the application that
injected them into the network. This necessitates the ability of the networks to execute
code in the data packet. This code can call on discovery functions provided on major nodes
or, if it founds itself on minor nodes that only route, select the best route to follow to get
to those services. To guarantee data safety, this will also require controlled replication
of data packets and finite life-times. Acknowledgments from the services that receive the
data packets back to the original generators of the data are also problematic as the source
may be disconnected or may have moved to a new location. Thus, replies also need to
be able to call upon distributed location services help them found their routes or cache
data in anticipation of a future connection. While it is important for devices to be able
to discover services, they should only be able to use those services for which they have
permission. There are protocols that solve network authentication problems like Kerberos
or IPsec but the former builds on statically configured centralized servers while the latter

does not solve problems of privacy and authentication raised by ubiquitous visions.

Another key issue is the need for data-centric networks. Active data bundles should be
able to marshal (and pay for) the resources they need to make progress in the network.
Data moves from device to device until it reaches the service it is intended for. Though
the ideas of ad-hoc networking are valuable, re-think of basic assumptions about network
operations and construction of a data-centric network architecture (to distill, name, and
locate the data objects that travel within the network) is needed. It is also important
for applications to adapt to different network, device and system characteristics. Network
infrastructure must be able to inform devices about the network they are using, as well
as be able to provide admission control or to guarantee quality of service. Protocols

such as RSVP have laid the initial groundwork for effective QoS management in mobile

CHAPTER 2. RELATED WORK 18

applications. A data-centric network must be able to manage ubiquitous persistent storage.
Sun Microsystem’s NFS offers transparent and authenticated access to a global set of files
residing on a central server. Unfortunately, this system requires static configuration and
has a single point of failure, making it undesirable for mobile applications. Reliability and
availability can be increased by using a distributed file system such as the Open Software
Foundation’s DFS. The Coda file system is a descendant of AFS that is designed specifically
for mobile clients. The Bayou project provides mobile clients access to data by using a
distributed database approach. Using these projects as starting points, a combination of
storage services will need to be designed and integrated into mobile environments. What
is really needed to make ubiquitous visions a reality is ubiquitous storage made available
to distributed applets running over an ad hoc network. There is still much to study
about the consistency semantics in this type of environment in the presence of failures and

intermittent connections.

The infrastructure and technology of distributed computing also plays an important role
in building a ubiquitous environment. Services have to download interfaces to communicate
with other services. For example if a service wants to send a picture to an other one, it
needs the executable code that provides the appropriate compression format that can be
read by the receiver service. Several emerging solutions are to this problem, including Jini
and Liquid Software are based on Java language. In these models, bytecode is downloaded
and executed on the client. Using the Java RMI, clients can then use the services of other
devices. Other solutions are based on CORBA and Microsoft’s COM. Both allow clients to
execute code located elsewhere, and provide mechanisms that allow clients to discover an
object’s interface at runtime. The challenge will be in developing an open standard that

incorporates the positive aspects of each.

It is likely that intermittent connectivity will be the norm for the foreseeable future
due to power, cost, bandwidth, latency, and congestion limitations. In order to achieve
invisible, trouble-free connections and disconnections from networks, mobility must be built
into protocols. By disconnecting during idle periods, devices will consume less power, and
lengthen the time between recharging batteries. Not surprisingly, new mobile protocols are
already appearing for the intermittent connection environment. Bluetooth and HomeRF

are standards for small area radio frequency (RF) networks in which devices can join and

CHAPTER 2. RELATED WORK 19

leave ad hoc networks of devices as necessary. These technologies allow mobile devices
to join new local networks to take advantage of local resources, it does not address more
complex issues such as hand-overs and signal strength analysis found in cellular protocols.
Mobile devices also need to be able to get information about the networks that they join.
A range of wireless technologies is needed with different transmission ranges and power
requirements to support devices like key-chains and earrings that function indefinitely
without recharging but have very limited range to more traditional PDAs that are needed
to be connected to the Internet and can be more easily recharged. An other important issue
is the scalability of the existing infrastructure. In networking RF is promising, but it suffers
from a limited bandwidth per volume defined by its range. Irrespective of the medium,

security must be integrated into the protocols to satisfy application requirements.

2.3 System Support for Pervasive Environments

In the sections before we have known the challenges and problems of ubiquitous comput-
ing. Question arises that how can we build applications over such a highly dynamic and
distributed environment. Noticeable that some kind of middleware is needed to hide or
expose the changes of devices, resources, services, and to handle the communication of di-
verse applications. In the followings I discuss what are the principles of a middleware that
is to support pervasive environments and the three main axes along, existing approaches
to building distributed systems, fall short, based on the ideas of one.world researchers of

Portolano Project [GRIMM et al.01].

First, many existing distributed systems try to hide distribution and, by building on dis-
tributed file systems or remote procedure call (RPC) packages, mask remote resources as
local resources. This transparency simplifies application development, since accessing a
remote resource is just like performing a local operation. However, this transparency also
comes at a cost in service quality and failure resilience. By presenting the same interface
to local and remote resources, transparency encourages a programming style that ignores
the differences between local and remote access, such as network bandwidth, and treats
the unavailability of a resource or a failure as an extreme case. But in an environment

where tens of thousands of devices and services come and go, change is inherent and the

CHAPTER 2. RELATED WORK 20

unavailability of some resource is a frequent occurrence.

Second, RPC packages and distributed object systems, compose distributed applications
through programmatic interfaces. Just like transparent access to remote resources, com-
position at the interface level simplifies application development. During composition at
the interface level more major application components are used, because they directly ref-
erence and invoke each other. As a result, it is unnecessarily hard to add new behaviors
to an application, because extending a component requires interposing on the interfaces it

uses, and is inadequate for large or complex interfaces.

Third, distributed object systems encapsulate both data and functionality within a single
abstraction, namely objects. However, by encapsulating data behind an object’s interface,
objects limit how data can be used and complicate the sharing, searching, and filtering of
data. In contrast, relational databases define a common data model that is separate from
behaviors and thus make it easy to use the same data for different and new applications.
Furthermore, objects as an encapsulation mechanism are based on the assumption that
data layout changes more frequently than an object’s interface, an assumption that may

be less valid for a global distributed computing environment.

Not all distributed systems are based on extensions of single-node programming method-
ologies. Notably, the World Wide Web does not rely on programmatic interfaces and does
not encapsulate data and functionality. It is built on only two basic operations, GET and
POST, and the exchange of passive, semi-structured data. Furthermore, the narrowness
of its operations and the uniformity of its data model have made practical to support the
World Wide Web across a huge variety of devices and to add new services, such as caching,

content transformation, and content distribution.

However, from a pervasive computing perspective the World Wide Web also suffers from
three significant limitations. First, it requires connected operation for any use other than
reading static pages. Second, it places the burden of adapting to change on users, for
example, by making them reload a page when a server is unavailable. Finally, it does not
seem to accommodate emerging technologies that are clearly useful for building adaptable

applications, such as mobile code and service discovery.

CHAPTER 2. RELATED WORK 21

This raises the question of how to structure systems support for pervasive applications. On
one side, extending single-node programming models to distributed systems leads to the
shortcomings discussed above. On the other side, the World Wide Web avoids several of the
shortcomings but is too limited for pervasive computing. To provide a better alternative,
three principles are to be identified that should guide the design of a system’s framework

for pervasive computing.

Adaptable
applications

Programming for change

Separate
data and
functionality

Expose Compose
change dynamically

Figure 2.2: System support principles for pervasive applications [GRIMM et al.01]

Expose change. Systems should expose change, including failures, rather than hide
distribution, so that applications can implement their own strategies for handling changes.
Event-based notification or callbacks are examples of suitable mechanisms. At the same
time, systems need to provide primitives that simplify the task of adequately re-acting to
change. Examples for such primitives include “checkpoint” and "restore” to simplify failure
recovery, “move to a remote node” to follow a user as he moves through the physical world,

and "find matching resource” to discover suitable services on the network.

Compose dynamically. Systems should make it easy to compose and expand applica-
tions and services at runtime. In particular, interposing on a component’s interactions with
other components or the outside world must be simple. Such features make it possible to
dynamically change the behavior of an application or add new behaviors without changing
the application itself. This is particularly useful for complex and reusable behaviors, such

as replicating an application’s data or deciding when to migrate an application.

Separate data and functionality. Systems need to provide a clean separation between
data and functionality, so that they can be managed separately and so that they can evolve

independently. The separation is especially important for services that search, filter, or

CHAPTER 2. RELATED WORK 22

translate large amounts of data. At the same time, data and functionality depend on
each other, for example, when migrating our chat application and the music it is currently
broadcasting. Systems thus need to include the ability to group data and functionality but

must make them accessible independently. Figure: 2.2.

Common to all three principles is the realization that systems cannot automatically decide
how to react to change, because there are too many alternatives. At the same time, a sys-
tem architecture whose design follows the three principles provides considerable support
for dealing with change. Exposing change helps with identifying and reacting to changes
in devices and the network. Dynamic composition helps with changes in application fea-
tures and behaviors. Finally, separating data and functionality helps with changes in data
formats and implementation. Given a system that follows these principles, application de-
velopers can focus on making applications adaptable instead of creating necessary system

support.

2.4 Problem Statement

As it can be seen the realization of pervasive or ubiquitous computing raises a lot of com-
puter technology problems. There are solutions for some problem field but most of these
suit the raised claims only in part. The greatest difficulty could be caused by the smooth
integration of developed systems that realizes pervasive computing. The earlier mentioned
research groups have significant results, they can show off working test systems although

these are yet quite far from Mark Weiser’s vision.

In my thesis I present the Blown-up system, which is a distributed service access technology.
Since the technologies, that aims the realization of pervasive computing, also focus on
distributed services (section 2.2), Blown-up could be fit into these technologies. Blown-up
also makes application development easier on devices with limited capabilities and on small
ranged wireless networks. Blown-up functions as a middleware and creates system support

for personal area network applications.

My goal was to implement the first Blown-up applications (section 4.1), thus present

the advantageous properties of the system. I designed the implemented applications to

CHAPTER 2. RELATED WORK 23

emphasize the special abilities of Blown-up. My second goal (section 4.2) was to make the
applications usable in sessions. To realize this, I implemented a control application, which
helps in establishing sessions. By the aid of the implemented applications the advantages
of Blown-up can be appreciated not only from developer aspect but from user aspect as

well.

Chapter 3

The Blown-up Middleware

Blown-up concept aims to support distributed services over a personal area network. The
system supposes that Blown-up enabled devices form an ad hoc network and hence they
are able to communicate with each other. An ad hoc network is not a computing environ-
ment by itself, it is only a set of communicating devices. Blown-up system is destined to
establish a computing environment, a PAN by connecting network applications or services
to each other. At each device all Blown-up enabled network service appear as local, mak-
ing programmers’ work easier. The system relieves application developers of the burden of
monitoring such a highly dynamic ad hoc network thus creates system support for personal

area network applications.

As mentioned above, Blown-up system associates applications to each other. An application
in Blown-up can provide software services to other network devices. For example, a device
with higher processing performance can run a software service that generates encryption
keys for safe communication of devices with lower performance, or may run entertaining
services like audio or video decoding. Another example might be a Blown-up compatible

game service.

Hardware services can also be offered in Blown-up through software services. For exam-
ple, a device can offer its storage capacity or its high performance processor by running
computing-intensive applications. A device could also offer for example its Ethernet net-

work access through a suitable Blown-up service. Upon this consideration the notion of

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 25

peripheral devices includes also internal peripheral devices of a computer. This sort of

concept implies treating peripheral devices and applications uniformly as services.

In a Blown-up network there is a special application called control application. Control
applications have the permission to connect the offered services thus creating set of connec-
tions called session. A session is always related to the control application that established
it. Blown-up users should build up their personal sessions by the aid of a control applica-

tion.

Dewices run the Blown-up services so devices are one level up in Blown-up hierarchy. They
are differentiated by Blown-up addresses. Any device that offer Blown-up compatible
services can join the system. Devices that support running only one type of service can

also be included into the network.

To develop applications onto this architecture system functions must be accessible for
programmers. The application programming interface (API) serves this purpose, which
enables developers to make their programs Blown-up compatible and so making creation

of applications easier in an ad hoc network.

3.1 Goals and Assumptions

The following scenario presents the opportunities of Blown-up.

Ralph arrives to his hotel room in Paris. On the way to the hotel he added the finishing
touches to his meeting presentation, but a little work is still left. As so far he worked on his
PDA he got tired of it due to its small touchpad and display. In the hotel room he starts
the Blown-up control application and look up the services offered by devices in the hotel
room. He orders the control application to set up connection to the wide screen display of
the room and to the wireless keyboard placed next to the bed. The controller sets up the

connections so Ralph can finish his work while relaxing (Figure 3.1).

After he finished the presentation he walks to the hotel conference room in which he agreed
with Helene to meet. He finds Helene there but the third person, George is late. He notices

by the service discovery function that Helene has a game station in her PAN which runs

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 26

Wide screen TV
PDA \

Keyboard

Figure 3.1: Working easy

a chess game. He asks Helene to let him play with the chess game until George arrives.
Helene allows Ralph to use the chess game so he connects - using the control application
- the display output of the chess game to his PDA’s display and the keyboard input of
the chess game to the wireless keyboard located in the room. From this time on the
game station belongs to Ralph’s PAN. In this case the game software runs on the game
station, the wireless keyboard serves as data input device, the display output of the game
application appears on Ralph’s PDA. Ralph also would like to use the projector but Helene
still works on it. So when he sets up the connections he also links the display output of
the chess game to the projector, and when Helene finishes working and gives up the usage

of the projector he can easily switch to it (Figure 3.2).

Helene

PDA .
bind > 4 {
commands &Qy
Projector
4
T
Keyboard Chess

Figure 3.2: Time to play!

Later Ralph gets bored with the chess, but George has not arrived yet. He decides to listen

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 27

to music so he redirects the graphical user interface of the mp3 player which can be found
on the conference table to his PDA. He would like to listen to the mp3 songs from the
conference room fileserver so he connects the server and the mp3 player. The only thing
he needs is a headphone which he connects to the output of the mp3 player and now he is

ready to start listening to music.

After a while Helene wants to play chess and asks Ralph to join the game. Ralph sets up
the previous game connection system including Helene’s cellular phone keyboard on which
Helene wishes to play. The display output of the chess game is now linked to the projector,
the first keyboard input is connected to the wireless keyboard used by Ralph, the second
keyboard input is connected to Helene’s cellular phone keyboard. Now they are ready to
play against each other (Figure 3.3). Fortunately a few minutes later George arrives so

they finish playing chess and start the conference.

Cellphone \
/ ZZrensj Q\/

Projector

Keyboard

Figure 3.3: Play against each other

An interesting situation arises when Ralph binds the projector and PDA’s display together
to the display output of the chess game while the projector is already in use by Helene.
Question arises that which picture will appear on the projector: Ralph’s chess or Helene’s
work? The explanation of this will be discussed in the later sections under headword

changing focus.

Three crucial requirement can be noticed from this scenario that such a system should meet.
First, from the aspect of usability connection configuration set-ups must be manageable

fast and easy - nobody wants to bother with time consuming initialization of sessions. If it

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 28

is too complicated task to set up connections people will not use the system. Thus minimal
user interaction must be sufficient and a few useful automatism must be implemented into
the system (control application GUI, section 4.2.2). Second, secure information exchange
must be provided. An unknown person can not be authorized to intercept our data as he
gets into the range of our personal area network. Third requirement that can be expected
is, that Blown-up must provide standardized interfaces for the communication of same
type of services. Without standardization services could not determine the exact meaning

of network data.

3.2 System Architecture and Protocol Stack

The Blown-up system was designed to be a middleware under applications and over op-
erating system or hardware (Figure 3.4). The Blown-up Micronet Protocol (BUMP) can
operate reaching the hardware directly on less powerful devices, without operating system,

or as part of or over operating system on more powerful devices.

Ctrl.
App. | App. | App. App. App. | App. | App. App.
BUMP BUMP
Hardware+OS Hardware+QOS

Network

Figure 3.4: System architecture [TDK2002]

By the aid of Blown-up, services offered by applications in the network can be seen and
used by applications running on different devices as if they were offered on the same device.
The chess game presented above can see the projector in the room as if it were its own

resource.

In the Blown-up system applications running on each device appear by their inputs and

outputs. To the analogy of the usual naming used in the field of Integrated Circuits (IC)

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 29

the inputs and outputs of applications are called pins. Each application can be used via
its pins. If one application has a free output pin - e.g. a keyboard output - then it can
be connected to another application which has the same type of input pin; if one has a
free input pin - e.g. a display input - then it makes its pin available for other applications.
In this approach Blown-up think in not just applications but also in peripheral devices: a
program is treated as a structured set of inputs and outputs. It accepts data on its inputs,
puts data onto its outputs - its exact operation remain hidden from other applications.

These applications are connected to each other with the aid of the control application.

Connections are defined to be point-to-point. A connection between two pin is called
channel. Channels implement simplex dataflow (possibly with acknowledgments returned,
Figure 3.5). In many cases more than one channel is needed to be established to use a
service offered by an application (in section 3.1 the chess game needs a keyboard input and

a display output at the same time). Such a set of channels is called a session.

One output pin can be connected to more input pins as well as one input pin can be
connected to more output pins at the same time, but only one of them is used at any
given time. This channel has the focus. Focus can be assigned to another channel by the
action called changing focus. Focus change is similar to "ALT-TAB” window focus changes
used by various operating systems: user focuses on one application, while all other running
applications are in the background. Referring to the scenario again, focus change is needed,

when Ralph switches the display output of the chess game from the PDA to the projector.

| Device 1 | | Device 2 | |
| || | | :
| Application | Application Application | antrgl Application
| pp :l pp pp : | Application PP |
—dJ4 -4 -+ |- — L 1 _a _ _ __ _ _| _
A4 Y < Y A\ 4 Y < <N
v

YA

Blown-Up Micronet Protocol

[
-

Figure 3.5: World seen by applications [TDK2002]|

A great number of programs and hardware devices can offer lots of in- and output. Cer-

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 30

tainly a keyboard input should be linked to a keyboard output. Linking an output of a
random number generator, for example, to a display input does not make any sense, so

Blown-up uses typecheck before establishing connections.

The presence of a control entity, which organizes connections is necessary in the network.
In terms of Blown-up there are only two types of application: user and control application.
However we can further differentiate two more type of control applications. The first one
is responsible for establishing and monitoring sessions. This type of control applications
can be run on a PDA, which has probable enough capacity to supervise a whole PAN. The
other type of control applications are those user applications that needs control attribute
to operate. This latter type of control application can use the same registering functions
as the former control application so Blown-up does not differentiate them, however there
is a need for this second type. The reason why this type of applications are needed and the
problems coming from not differentiating two type of control applications, will be discussed

in section 4.2 and chapter 5.

Many types of computational devices can cooperate in the Blown-up system. Desktop PCs,
servers, notebooks, cellular phones, or even some special hardware designed for supporting
some special application. The latter can be some appliance, playstation, other software
station, or standalone computer peripheral devices (e.g. a mouse or keyboard) which has

radio network interface.

The goal of Blown-up Micronet Protocol is to support network communication by the usage
of its application programming interface. The system presents opportunity for application
developers to create programs easily on distributed ad hoc type PANs. By the usage of
API functions implemented in language C++, programmers can prepare their applications

for BUMP support.

3.2.1 Overview of the Protocol Stack

The Blown-up system uses the Blown-up Micronet Protocol, which consists of three layers:
a transport, a network, and an adaptation layer. As BUMP is a middleware, applications

run over, and layers for information transfer operate under BUMP layers. As we can see on

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 31

figure 3.6 the protocol stack is divided into two more parts, a user and a control plane
(BUMP controller - BUMPC). The applications use the user plane for real communication,

the control plane to manage connections.

' ' '
l« USER PLANE »« CONTROL PLANE 3|

»}
App. I	Control App.
‘	Y
A A A A	
-l eeeemeemceee—cclececccccccccccccccccte——————— O A S | - —=.API|
I v I |
TAP].‘TAPZ‘TAPS‘TAP4‘TAP5‘ Authentication .
Stream Pipe Block

‘ ‘ F*riori’ty q+eues ‘ ‘

BUMP-Control

BUMP-Network

Encryption (optional)

Adaptation module 1. Adaptation module 2. Adaptation module n.

Transmission Layer 1. Transmission Layer 2. Transmission Layer n.

Figure 3.6: BUMP layer structure [TDK2002]

Applications are connected through user plane to the modular BUMP transport layer by
their pins. Pin connections are point-to-point by definition, but attaching a special duplica-
tor application makes point-to-multipoint connections possible (for example an application
which has one video input and multiple video outputs). All of the pins use a given type
of transport module. Pins may send data through these modules to or may receive in-
formation from other applications. If a user wants to connect applications with the aid
of a control application or modify the existing connections he can send commands to the

control module (BUMPC) located on the control plane.

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 32

3.2.2 User Plane

Transport Layer

The role of transport layer is to forward the data packets to the same layer of the device on
the other side of a connection, using the rules specified in the given transport layer, and to
find the right order of data packets received. Transport types are differentiated according
to dataflow characteristics (transaction-based, reliability, flowcontrol, maximum transfer
unit etc.). All applications, which want to communicate have one or more pins connected
to a transport layer module through an access point (Transport Access Point - TAP).
Applications should define, which module their pin should be connected to, depending on
the type of data channel they wish to register. So far Blown-up Micronet Protocol defines
three type of modules: stream, pipe or block. The parameters of the transport modules

can be seen in the table below.

‘ Stream Pipe Block
data unit | lower than 100 bytes | lower than 100 bytes 1 block
type flow transaction transaction
reliability not reliable reliable reliable
flow control yes no yes
data rate low low high and bursty

Table 3.1: Stream, pipe and block transfer module types [TDK2002]

The pins of applications are registered in the transport layer. To every pin the following

attributes are assigned:

the owner, that gives the application the pin is registered to;
e the priority in case of writable pins. This attribute plays role in sending data;

e the direction, which gives the data flow direction of the pin (input or output);

and a boolean variable, which shows that a pin is in disabled or enabled state.

A pin can be in disabled state in two cases. A pin is disabled if it is an output pin and it

is out of use. This case can occur when an application may be sending data continuously

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 33

onto its output pin, but no-one uses it, so there is no point in forwarding the data into the
network. The other case when a pin can be in disabled state when it is an output pin, it
is connected and it does not have the focus. This case occurred in the scenario in section
3.1, when Ralph connected the display output of the chess game to the projector despite
Helene was still using it. Helene’s work appears on the display (the focus was on Helene’s

channel), so Blown-up can not permit the chess game’s display output pin to send data.

The only transport module which has been already designed but not yet implemented
into Blown-up Micronet Protocol uses pipe characteristic data transmission. This kind of
transport applies a protocol with selective acknowledgments and congestion window that
can be used efficiently in case of lossy channels. Applying pipe transport, the receiver does
not drop a frame just because it does not received the frames in the right order. It stores

the received frames and waits until it receives the missing ones.

Network Layer

The task of BUMP-Network is to handle and supervise established connections. This
layer registers pins of local applications and pins of remote (or local in special case) ap-
plications connected by a channel (TAP - TAP couples). The BUMP-Network accepts
messages from upper layers, forwards them to the BUMP-Network of the other device
laying on the other side of the connection, through adaptation layer, then passes the
data up to the transport layer. It contains message queues for prioritized dataflow in the
direction of adaptation layer and an encryption module to encrypt the data injected into

the network. The encryption module has not been designed yet.

Adaptation Layer

The lowest layer of Blown-up Micronet Protocol is the adaptation layer, that transforms the
messages of BUMP-Network into a form suitable for the transmission layer. BUMP could
be used over any kind of network technology as it is MAC layer independent. Currently
it is implemented over UDP/IP but it can be attached to any type of protocol by the

modification of the adaptation layer. Since IP has many functions which are unnecessary

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 34

in a personal network BUMP could be efficiently used directly reaching the MAC layers
(for example there is no point in implementing the IP stack into a mouse). By additional
adaptation modules BUMP can be built over WaveLan (IEEE 802.11), Bluetooth or other

RF technologies.

3.2.3 Control Plane

Connections of the pins are built, torn down, and managed by BUMP controller in
the network. BUMPC is responsible for discovering services offered by network devices.

BUMP controller performs the following tasks of the control plane:

e advertising services offered by local applications;

e monitoring and collecting services offered by remote applications, and make this

information available for local applications;
e connecting pins of local applications to pins of local or remote applications;

e establishing sessions for local control application or local user application with control

attribute, managing it and revoke after usage.

Applications send registering and connection management messages to BUMPC. Control
applications are able to manage the connections initiated by themselves. So while a con-
trol application is capable to connect remote services without effectively be involved into
that connection system, a simple user application do not have the permission to perform
this. The authentication module controls these operations above BUMPC: it registers all
applications and their permissions applying to the BUMP, and examine program requests

by these entries.

Registering Applications

Applications in Blown-up system offer at least one output or one input pin. To send or
receive data through them, the application has to be registered into the system. The

BUMPC has to know the following attributes of a registered application:

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 35

e the name of the application (AppName);

e the description of the application (AppDescr), from which we can learn additional

information about the application;

e the internal identifier of the application (AppID), which together with the device

address globally identifies a service;
e the characteristic of the application’s pins, which are the followings:

- service type of the pin (PinType), which gives what kind of information
it handles (for example 'keyboard’). The type of the pin provides typecheck
mechanisms during establishment of connection, avoiding to connect two pins

with different types;

- dataflow direction (Input/Output) gives whether a pin is readable or writable.
A pin can not be readable and writable at the same time, so two pins have to

be used for duplex transmission;

- the necessity of the pin (Optional/Mandatory), to mark pins that must be
connected for the service to work. Optional pins should be connected on de-
mand. For example, in section 3.1 there is no point in starting the displayless
chess game without connecting it to the PDA’s display (or to the projector),

thus the display pin of the game application is mandatory;

- the priority in case of writable pins. This attribute plays role in sending data.

This pin information is used at the BUMP-Network priority queues;

- the capacity is the maximum number of pins that could be connected to a given
pin. A channel (a link between two pins) can be selected with focus change in

terms of dataflow;
- the type of the transport module used by a pin (TP-Type);

- the internal identifier of the pin (TAP-ID) which gives the transport service

access point of the pin;

- the outer identifier of the pin given by the user (MyPINName), which aims
handling and identifying pins user friendly by a simple name string. Referring

again to section 3.1 the chess game have to use different names to its pins.

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 36

When Ralph sets up the two player chess game session, the name of the two
keyboard input of the chess game must be different to help Ralph differentiate
the inputs. In case the capacity of the pins is higher than one the two player
could be linked to the same input pin so Helene and Ralph could not manage

to establish the desired session obviously.

The BUMPC manages a service registry table where these information are located. BUMPC
is also informed of applications registered to a BUMPC of another device by beacon mes-
sages, which messages only contain the most important information needed to handle an
application: the device address, application identifier and the application name. BUMPC
checks whether it gets beacons continuously from applications that it already knows. If
not, it deletes the service from the list of usable services. The ceasing of beacon messages
can be caused by two reason: the application stopped, or the device which runs the service
can no longer forward messages to a given BUMPC. The revoke of the service means that

the service finished its operation in the network.

3.3 Application Programming Interface

The Blown-up Micronet Protocol provides an application programming interface to reach
system services. With the aid of the API, application developers can easily make their
programs compatible with Blown-up. The functions the API contains can be organized
into two subsets: control and user functions. Control functions provide reaching those
system services that are necessary for a control application while user functions aim simple

user applications.

In the followings I describe the API functions, their attributes and the system services
they reach. The API functions can be included by a simple header file. Parameters, return

values, and structures used by this functions are described in details in the appendix.

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 37

Control Functions

bump_RegisterControlEntity: this function have to be called upon control application
startup. It registers the control entity into the BUMP stack. Without calling this function

the control services of BUMP can not be used.

bump_GetApplicationsReset: resets application listing query. Since the next function
returns applications one by one, this function have to be called if we want to start the

query again from the first application.

bump_GetApplications: this function returns a Blown-up application into the memory
area given as a parameter. The size of memory area must be equal with the size of
AppItem structure. The return value of the function is NULL if the returned application

item was the last one in the BUMP register, else it returns a positive value.

bump_GetPINsReset: serves similar function as bump_GetApplicationsReset but it should

be applied before pin queries.

bump_GetPINs: has a similar role as bump_GetApplications but it writes a PIN structure

into the given memory area.

bump_GetInfo: returns the description of the application given in parameters to a memory
area. The maximal length of the memory area also has to be given. The return value of

the function is the size of the string that has been written into the memory area.

bump_CreateSessionStart: this function starts a transaction that aims creating a con-
nection system. The return value of the function is a transaction identifier which is to refer

the started transaction.

bump_BindPINs: in case of creating sessions we have to identify the involved links by pin
pairs. One pin pair is stored into a PINPair structure by their device address, application
identifier and pin name. This type of structure has to be passed on to the bump_BindPINs
function completed with the transaction ID it relates. The return value of the function is

a positive value on success or zero on failure.

bump_CreateSessionEnd: marks the end of the transaction which has the ID given in its

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 38

attribute. The return value is positive value if BUMP managed to build up the whole

session.

bump_ChangeLocalFocus: this function changes focus on a pin belonging to an application
running on the local device. As appropriate it takes an application ID and a pin name.

Return value shows success or failure.

bump_ChangeRemoteFocus: almost the same as the function above, but changes focus on a
remote pin. This function comes with the restriction that a control application can change

the focus of only those pins that is related to it.

bump_UnRegisterControlEntity: should be called upon the end of the operation of control

application. It deregisters the control entity.

User Functions

bump_RegisterApplicationStart: a simple application should call this function to regis-

ter into BUMP. Returns success or failure.

bump_RegisterPIN: registers a pin for an application. A PIN structure must be passed on

to this function. Returns positive value on success or zero on failure.

bump_RegisterApplicationEnd: marks the end of the application registration procedure.

Returns success or failure.

bump_SendData: this is a simple data send function. In case of sending data this func-
tion must be called giving a pin name, a memory area, and the size which long the
bump_SendData should read on. The return value is negative if the pin is not connected
else zero if the pin is disabled. If the send succeeds then the function returns the number

of the sent bytes.

bump_ReadData: is a simple data read function. The same attributes have to be given
as were given at bump_SendData. But we have to give the maximum size of the memory
area bump_ReadData should write on. A fourth parameter also has to be set. This last

parameter blocks or unblocks the read function. In case of blocking the function does not

CHAPTER 3. THE BLOWN-UP MIDDLEWARE 39

return until it can read data from the channel. The return value is the size of data read.

bump_RevokeService: should be called upon the end of the operation of the application.

It revokes the service from Blown-up system.

Chapter 4

Applications for BUMP

In the previous chapter I introduced the two unique features of Blown-up concept. The first
one is that Blown-up simplifies application development over ad hoc networks by allowing
developers to register resource requests statically, thus, require the presence of certain
resources. The other one is we can use distributed services in an ad hoc network with
the aid of Blown-up, hence services can form our own personal network. In this chapter
I present the benefits of Blown-up programming interface through two Blown-up enabled
services: a program, which aims playing mp3 music, and a file service application which
is able to handle simple file operations. After I introduced their features and operations
I present the main application of the Blown-up concept: a control application and its

Graphical User Interface (GUT) that simplifies its usage.

4.1 Blown-up User Applications

Blown-up user applications are those that offer or request services in a Blown-up enabled
network. Blown-up aims helping the collaboration of these services. All kind of services
we would like to use needs a server and a client program. Servers offer services maybe
attending more clients, while clients use the services. However in terms of Blown-up
those applications are special that offer and use services at the same time; these type of

programs could be called as hybrid programs. For example the chess game in section 3.1

CHAPTER 4. APPLICATIONS FOR BUMP 41

uses at least one keyboard service and a display service and offers itself as a chess service.
In the followings I am going to introduce a simple file access service and an mp3 service.
In this case the file server acts as a simple server, the mp3 client is a simple client while
the mp3 server is a hybrid application as it is going to translate the file access requests of
the mp3 client into a request for the file service. The implemented configuration can be

seen on Figure 4.1.

File server

MP3 client

File upload channel

File download channel

MP3 server

Figure 4.1: Implemented session

The mp3 client has an output pin which injects mp3 playing commands into the channel.
The other end of the channel is handled by the mp3 command input pin of the mp3 server.
The mp3 server has two other pins. One of them is an output pin which forwards file
operation requests. Accordingly a file download pin is also needed to download the files
containing mp3 coded music to the mp3 server. However the fourth, file upload pin seems
to be redundant it is not that. If we think in a simple file service server-client session, it
is certain that it needs an upload function to place data onto the computer that runs the
server program. Upon this consideration the file service applications were implemented
with an upload pin. Since only mandatory pins were implemented into the current version
of BUMP, this upload pin had to be defined as a pin that is necessary to be connected to
a corresponding pin, if we want to use the file service application. Hence mp3 service had

to be implemented with this mandatory upload pin. In the next sections I will describe

CHAPTER 4. APPLICATIONS FOR BUMP 42

the operation and functions of the file access service client and server.

4.1.1 File Access Service

The file access service was created to accomplish the simple file request operations over
Blown-up Micronet Protocol. Only the basic file operations were implemented to this
service: get, put, dir, cd, since the focus was on presenting Blown-up features. The

functions of these commands are the followings:

cd: changes and buffers actual directory;

get: downloads a file to the client device from the device that runs the server pro-

gram. It gets the file from the directory which was buffered by cd command;

put: uploads a file from the client device to the server device to the actual directory

typed by cd;

dir: lists actual directory;

Client

As mentioned above the file service client has three pins. Before usage they must be defined

and registered to BUMP. The command pin is defined as follows:

fscpin.TP_Type = 1;
fscpin.PIN_Type = 4;

fscpin.I0 = OUTPUT;

fscpin.OM = MANDATORY;

fscpin.Priority = 1;

fscpin.Capacity = 1;

strcpy(fscpin.MyPINName,"Simple file service command output pin");

These instructions fill in the memory area of the UserPIN structure (A.2) named fscpin.

Field TP_Type means the transport type the pin uses. As only one type of transport layer

CHAPTER 4. APPLICATIONS FOR BUMP 43

has been implemented into the current version of BUMP middleware, the value 1 is used
for all kind of dataflow. Pin-Type is a service descriptor. This serves as a service identifier
that has to be unique for different type of services. The values of this variable is advisable
to be agreed in the future to avoid service conflicts. I0 defines whether the pin is an input
pin or an output pin. OM shows the necessity of the pin. It is a boolean variable that can be
optional or mandatory. This had to be determined as mandatory in case of every pin due
to limitations in current BUMP implementation. Priority defines the priority of the data
sent on a pin. The lower the value, the higher the priority. Capacity shows the number of
the pins that can be connected to the given pin. The switches between the connected pins
can be managed by focuschange. Finally MyPINName is a user friendly string descriptor of

the pin.

Apart from the command pin, the file service client has two other pins. The definition of
these differs in three parameters from the previous one: the file download pin is an input
pin, with service type 5 as it accepts file data blocks, while file upload pin is an output with
the same service type. Certainly the pin name of these pins differs one by one according

to their types.

The file access service application is a very simple file access application. The program
gets a user command and its parameter (the name of a file) from standard input, processes
the command, then sends the asked file through BUMP. Finally it waits for an acknowl-
edgement (ACK) from the file service server on the download channel. In case of changing
directory (cd) the ACK can be either positive (the directory exists) or negative. Listing
the directory (dir) can also result in negative ACK in case the given directory does not
exist. If dir succeeds it returns the directory elements. Get downloads a given file to the
client device if it exists on the server, while put uploads a file to the server device from the

client. The command line user interface of the file service client can be seen on Figure 4.2.

Server

File server aims serving the file access commands from the client. The file server has the
same type of pins as the client, except their directions are the opposite ones. Positive or

negative acknowledgements are sent back to the client on the download data channel. The

CHAPTER 4. APPLICATIONS FOR BUMP 44

[£1-* Konsole «3» [=][O][x]
File Sessions Settings Help

boovacshiEmichelle ™ bunptest$ | /fFzerviceclient
BUMP,CC: initialized guews "0,
Foplication regiztered to bump. name: fileservice client. description: Linux £il
= zervice client
Simple file service command output pin registered
Fimple file zervice data input (download? pin registered
Simple file =zervice data output fuplosd? pin registered
Type 'belp' for kelp!
Fileservice client » help
Conmands :
dir
cd
et
put
help
exit

Fileservice client > |J

[ﬂ Mew
-
I

Figure 4.2: User interface of the file service client

server executes the following commands on client requests.

In case of a cd command the server checks the existence of the directory given as the
parameter of the command. If the result of the check procedure was successful it stores
the given path and changes the current working directory to it. Every following command
is executed in the working path. Of course the parameter could be not only relative, but

it could be given with full path, beginning with root: ’/’.

The dir command calls a simple listing function. The listing procedure checks the given
path if the dir had an argument, if not, it gets the path from the buffer, then gives back

the directory elements one bye one. The output is sent to the client.

Upon calling the get command, the server tries to read and forward the requested file to
the client. The full path is read from the current directory stored by the buffer or got from
the command line if a full path was given. If the file was found, the server reads the file
blocks into a unsigned char array followed by an integer value that marks end of file.
The maximal size of this array is defined by BUMP. The data stored by the unsigned char

array and the integer value is sent to the client.

CHAPTER 4. APPLICATIONS FOR BUMP 45

The put command is a reversed get as the file is read at the client and written at the

server. Certainly the buffered path is also taken into consideration.

4.1.2 MP3 Service

The task of the mp3 service is to provide a music player application for Blown-up. I
decided to use the X MultiMedia System (XMMS). To make XMMS applicable for the use
in a Blown-up enabled network, I implemented client-server applications that are able to
communicate with each other through Blown-up. The client sends mp3 playing commands
to the server. The server interprets these commands into XMMS commands. Nevertheless

Blown-up empowers the mp3 server with a special function described later.

The mp3 client and server are able to interpret the following commands:

e play file now

e pause playing

e stop playing

e add file to playlist
e play playlist

e skip file backwards

e skip file forwards

Client

The mp3 service client has only one output pin, named "XMMS mp3 service acceptor pin”.
This pin sends the user commands to the channel. The commands are sent through the
network in a structure that stores the message type and a string. The string contains the
name and path of the mp3 coded file on what the user wants to operate. The next figure

shows the user interface of the mp3 client.

CHAPTER 4. APPLICATIONS FOR BUMP 46

[£1-* Konsole «3» [=][O][x]
File Sessions Settings Help

b ovacsbEmnichelle:™ bumptest# |, /mp3client
BUMP,CC: initialized guews "0, |
Foplication regiztered to bump. name: mp3 player acceptor. description: HMMS (Li
nux mp3 player acceptor)
MMS mpd service acceptor pin registered
Help: menuitem 21
MP3 player > 8
Command ids:
play file now
pauze playing
ztop playing
add file to playlist
rlay playlist
=k ip backwards
zkip forwards
help
exit

000 =) I P) M
[AN T N A SO R N N |

hrs

MF3E player

[ﬂ Mew
-
I

Figure 4.3: User interface of the mp3 service client

Server

The mp3 server is the only hybrid application in the session that I implemented. Actually
a simplified file service client has been integrated into this application. It has four pins.
Three are adopted from the file service client: the command, download, and upload pins.
The fourth pin is an "XMMS mp3 service pin” that accepts mp3 player user commands

from mp3 service client.

Those mp3 player commands that do not get a filename as attribute (e.g. stop playing)
are simply translated to system calls and passed up to XMMS. Others like play or add file
to playlist are treated in another way. The only file transfer command this application can
apply is get. This command is needed to get the user requested mp3 file(s) from a file
server to the mp3 server. First the user instructs the mp3 client to play an mp3 coded file,
the mp3 server receives the command, then requests the given file from the file server. The
mp3 server downloads the music, and calls a system command which starts the XMMS

mp3 player with the downloaded file.

CHAPTER 4. APPLICATIONS FOR BUMP 47

4.1.3 Summary of BUMP User Plane

The registration of applications and pins into Blown-up can be achieved by those easy-to-
use initialization instructions that were presented in 4.1.1. Only a few parameters have to
be set that describes service type, dataflow type, direction, etc., and a string to name the
pin to be registered. This string is the only one that identifies the pin. Network addresses,
port numbers are not needed to be taken into account. The application almost does not

see it is over a network.

Before registering the pins of an application, we have to register the application itself. This
can be attained by calling a BUMP API function. The name of the application and an

application description have to be passed on to the function.

if (bump_RegisterApplicationStart("application name",
"application description") < 0) {

fprintf (stderr,"Error: Can not register application!\n");

After we managed to get over this procedure, the turn is on registering the pins one by
one. We have to fill in a UserPIN structure (A.2) with those parameters already mentioned.

The next example passes on this type of structure called "pinl”.

if (bump_RegisterPIN(pinl) < 0) {

fprintf(stderr,"Error: Failed to initialize pin!\n");

Finally we have to mark the end of the registration procedure to BUMP implying we are

not requesting more pins to be registered.

if (bump_RegisterApplicationEnd() < 0) {
fprintf(stderr,"Error: Failed to initialize pins \

Can not register application!\n");

CHAPTER 4. APPLICATIONS FOR BUMP 48

As it can be seen all three functions have a success or failure return value. The return
value of the first function is lower than zero if BUMP failed to initialize the application.
The second function returns success or failure pin by pin while the third returns overall
result. In the present implementation of BUMP, bump_RegisterApplicationEnd returns
zero if one of the bump_RegisterPIN returned zero. This comes because of the support of

optional pins is not yet implemented.

After the registration procedure sending onto and receiving from the channel is very simple

only the following functions have to be called.

bump_SendData(pin.MyPINName, &msg, sizeof (struct command_message));

bump_ReadData(pin.MyPINName, &msg, sizeof(struct command_message), WAIT);

The attributes of bump_SendData and bump_ReadData are quite trivial, they were described
in section 3.3. Before the application hangs up its operation over the BUMP it has to call

a revoke function to safely remove any record related to it from the protocol stack.
bump_RevokeService();

These functions above are all that a user application operating over Blown-up has to cope
with. They can be easily overviewed and handled, and however the application operates
over a network, listening, connecting, accepting clients are not need to be taken into
account. Actually we can say that Blown-up makes network programming simple and
efficient. Blown-up Micronet Protocol enables the previously described applications to

operate anywhere in a Blown-up network, either on the same device or different devices.

In the next sections I describe the BUMP control plane, a control application and its GUI.

4.2 Control Application

A control application (CA) is the only application in Blown-up that is able to give control
instructions to BUMP. A control application can build up and revoke sessions, list the

Blown-up network services or initiate focuschanges. By establishing sessions users can

CHAPTER 4. APPLICATIONS FOR BUMP 49

create their own personal network. That is why usual control applications should be run
on more intelligent devices like PDAs or mobile phones from which users can easily create
create and monitor their sessions. However CAs are to manage connection systems a simple
user application can register into BUMP as a CA by calling the control application register
functions. These functions are needed if the given application needs some controlling
functions to its operation. Let us assume that we run a positioning service on a mouse. We
are able to connect more than one acceptor (client) pin to the mouse due to its capacity is
higher than one. We connect the mouse to our PC and our laptop by the control application
running on the latter. It is quite uncomfortable to hunt up our CA on the laptop every
time we want to switch the mouse between the two computer. A more suitable solution is
to implement a simple control application into the mouse user application that is able to
give focus changing instructions. In terms of Blown-up those applications that call control
register functions are treated equally, regardless they are registered as user applications or

not.

BUMP does not define how many control application can be present in a Blown-up net-
work, so the number of them is not limited neither in Blown-up network nor on Blown-up
devices. Certainly these applications have to be restricted in permission of managing ses-
sions. BUMP permits CAs to access only those sessions that have been established by the
given CA and to modify those Blown-up applications that runs on the device of the CA.

Problems with control applications’ permissions will be discussed in chapter 5.

An important feature of control applications should be to provide an easy and efficient way
to set up sessions. Upon this consideration a graphical user interface is advisable to be
implemented as the front-end of CAs. Without this, operating a control application could

be time consuming and makes the use of Blown-up uncomfortable for users.

In the next two sections I describe the operation and functions of the control application’s

back-end and front-end.

CHAPTER 4. APPLICATIONS FOR BUMP 50

4.2.1 Back-end

The back-end of the control application was designed to be a server for the graphical
interface. It realizes the previously described control application functions, stores their
results and makes the results available for GUI queries. I implemented the back-end in
C++, while I chose TCL/TK to implement the GUI. For their collaboration I decided to
use socket communication. The communication method is quite simple. The TCL code
gives commands on user interactions to the back-end then the back-end replies or waits
for more data (for example at creating sessions). The storage of the Blown-up network
information that is available through control plane API (section 3.3) functions, is solved
by C++ classes. Classes are appropriate not only to store but to easily make available this

information through their member functions.

The back-end provides the following services for the front-end:

e refresh: initiates a BUMP query that collects all devices, applications and pins that
are available in Blown-up. The result of the query is stored only in the memory of
the back-end. The front-end has to apply the following four service to access the

refreshed information;

e get devices: due to considerations will be discussed in section 4.2.2, devices, ap-
plications and pins should be looked up one bye one. This command initiates a query
served from the memory of back-end, and returns the addresses of Blown-up devices

for the front-end;

e get applications: similar as get_ devices but requests the name, identifier or de-

scription of the application on a given device;

e get pins: similar as get_applications but requests the MyPINName of given applica-
tion’s pins;
e get pinparams: requests every parameter of a given pin: pin type, transport type,

direction, necessity, priority, capacity, pin name;

e create: initiates a session set up. After this command, the pin pairs requested to

be connected have to be sent from the front-end. The established session is stored

CHAPTER 4. APPLICATIONS FOR BUMP

ol

in the memory of the back-end;

e show: lists those sessions that have been created by the control application. It serves

back a session identifier and the pin pairs taking part in that session;

e delete: disconnects a selected session by session identifier;

e focus: changes focus on a selected pin;

e exit: exits from control application and unregisters it from BUMP.

In behalf of serving the front-end needed data, two main object have to be stored into

the memory of the control application. The first contains pins and the applications they

are related to, while the second is for making session information available. The former is

solved by class AppPIN, the latter by class ActiveSession. The efficient storage of these

classes is solved by a list template class. A simple UML diagram of the attributes and

member functions can be seen on Figure 4.4.

List

-head: ListElen<R> * = NULL
-current: ListElenkR> * = NULL
#elens: int = 0

- Conpar el ns(R&, R&) :
+Insert(R&): void
+Del eteMore(R&): int
+Get Next (R&): I nt
+ClearList(): void
+CGetElerm(): int

- Conpar eDel More():

virtual int

virtual int

*

TRT
ListElem ~~°7'

-data: T

-next: ListElem*

+Li st El en(T, Li stEl em *)

ActiveSessionList

AppPINList

-1Ds: int
- si zel Ds:

* = NULL
int =0

+Del et eSession(int): void
+Cl ear Al | Session(): void

+ShowandSendSessi ons(i nt)
+Cet si zel Ds(): int

+Newl D(): int

+Del | D(int): void

- Conpar el ns(Acti veSessi on&, Acti veSession&): int
- Conpar eDel More(Acti veSessi on&, ActiveSession&): int
+l nsert Sessi on(ActiveSession *,int): int

- Conpar el ns(AppPl N& AppPI N&) : i nt
+Refresh(): void

+CGet Devi ces(int): void

+Cet Appl i cations(int, address):
+Get PI Ns(int, address,int): void

voi d

+Get Pl NPar ans(i nt, address, i nt, char*):

+print(): void

voi d

Class AppPIN

Figure 4.4: UML

diagram

As mentioned above class AppPIN aims storing pins and applications together. This class

serves as list element of AppPINList. The attributes are the followings:

CHAPTER 4. APPLICATIONS FOR BUMP 52

e application: is a struct AppItem data structure which stores three main parame-

ters of an application: name, device address and an identifier;

e app_description: contains the description of the application. It is not integrated
into the former structure because BUMP returns it by an other function (due to

network traffic considerations);

e pin: is a struct UserPIN data structure which stores a pin and its user-important

information.

AppPIN

-application: Appltem
-pin: UserPIN
-app_description: char *

+AppPl N(Appl t em User PI N)

+AppPl N(Appl t em User PI N, char *)
+Get Application(): Appltem
+CGet User PIN(): UserPI N

+Cet Descr (char *): void

Figure 4.5: Class AppPIN

Most of the member functions that can be seen on Figure 4.5 are simple attribute returner
function (e.g. GetApplication). They are able to return the three attributes of the class.
As it can be seen there are two different types of constructor for the more attribute flexible

creation of class objects.

Class AppPINList

Class AppPINList is the container of AppPIN. One pin only occurs once in the list while
an application occurs as many times as many pins it has. Opportunity raised during the
implementation to store pins and applications in different classes and lists, keeping their
relationship together by some foreign key and therefore reduce redundant data. Consider-
ing the additional information per item and the number of items that can occur does not

implied yet the necessity of more sophisticated database storing algorithms.

Class AppPINList is inherited from the template list class, so thus coming into a few useful

list manipulating functions like Insert, ClearList, GetNext. The class has one private

CHAPTER 4. APPLICATIONS FOR BUMP 53

compare function which aids inserting into the list sorted. This function is also defined
in the template list class as a virtual function. AppPINList has five more public member
functions that serves GUI requests itemized earlier. Each of them has been designed
upon the same consideration. Searching and filtering requested information from database
then returning it to the GUI. GetDevices selects diverse devices, GetApplications filters
on a device address and replies the application running on that device, GetPINs selects
those pins that correspond the given device and application identifier, while GetPINParams

returns each of the user-important parameters of a given pin.

Class ActiveSession

The relationship between ActiveSession and ActiveSessionList is the same as the re-

lationship of AppPIN and AppPINList. The attributes of this class are the followings:

e activepair: is a struct PINPair structure storing a pin pair by a pair of device

address, application identifier, and pin name. These together define a channel;

e bindID: is the identifier of the session that activepair relates to. Certainly one
bindID occurs more in the ActiveSessionList because more pin pair can take part

in one session.

e ID: is the unique identifier of the pair. In the present implementation of BUMP,
sessions are not able to be modified after establishing them. In case this would be
available in the future, ID should help in handling pin pairs one by one. In the

current CA implementation it does not have any role.

The ActiveSession member functions are quite simple. There are two different type of
constructor, a destructor, three attribute get function to reach class private members. The
latter is important during GUI queries. There are two value adding operator overload
functions, one for copying from another ActiveSession class, the other is for reading data
from a struct PINPair into ActiveSession. There are also two set functions for setting
the bindID and ID attributes. These are needed, because the session and the unique

identifier are got later then the construction of an ActiveSession class happens. The

CHAPTER 4. APPLICATIONS FOR BUMP 54

ActiveSession

-activepair: PlINPair

-bindlD: int =0

-ID int =0

+Act i veSessi on(int)

+Act i veSessi on(Pi nPair,int)

+Cet PI NPair(): PINPair

+Cetbindl D(): int

+GetID(): int

+SetID(int): void

+Setbindl D(int): void

+oper at or =(Act i veSessi on&): Acti veSessi on&
+operator=(PI NPair&): ActiveSession&

Figure 4.6: Class ActiveSession

ActiveSession class is constructed when the back-end have received the desired session
(in pin pairs) from the front-end. However the values of bindID and ID are got when
Blown-up have established the desired session. So a class ActiveSession is sent to Blown-
up, and then the bindID is received. ID is drawn later by the back-end to identify a given

ActiveSession class.

Class ActiveSessionList

Class ActiveSessionList serves as the container class of ActiveSession, it has been
also inherited from the template list class. It has two private compare functions for list
operations. One for inserting sorted, the other for getting list elements by unique id-s.
There is a constructor and a destructor. There are two additional attributes. The first is
IDs to store used identifiers while the second sizeIDs is for storing the actual size of the

ID array.

ActiveSessionList has three functions that serves front-end requests. InsertSession is
for establishing user requested sessions, and inserting them to the back-end memory. This
function gets a pre-filled ActiveSession array. The objects taking part of this array are
containing those pin pairs that have been requested by the user and so these pin pairs act
as a channel endpoints in user’s session. At the beginning of the function all requested
pin pairs are asked to be connected by BUMP. Upon success the session is created, ID-s
and bind ID-s are assigned to the corresponding ActiveSession object. In case of not

succeeding with a given pin pair user could be offered to choose an other pin pair in place

CHAPTER 4. APPLICATIONS FOR BUMP 95

of the failed one, or to accept the reduced connection system. It is very important that
the latter can occur only if the pins in the failed pin pair were optional. Since the error
handling of BUMP is not fully advanced yet thus there was no point in fully implementing
the first feature. However BUMP does not handle optional pins, the second feature could
work in the present implementation of the control application, but it automatically accepts

the reduced sessions without asking the user.

The last two GUI serving function are ShowandSendSessions and DeleteSession. The
former returns all of the earlier established sessions that has been created by the control
application. It returns with session identifiers and pin pairs. The latter deletes and so

tears down a selected session by an identifier.

4.2.2 Front-end

The front-end or graphical user interface of the control application makes a Blown-up
enabled network easily overviewable and handleable. I wrote it in TCL/TK, a platform
independent scripting language with graphical extension. I decided to use socket commu-

nication for the collaboration of the GUI and the back-end.

TK splits up a window into frames. The main frame of the control application was de-
signed to easily look up Blown-up enabled devices, their applications and the pins of the
applications. The additional functions of the CA, like refreshing network status, creating,

showing and deleting sessions can be accessed over the menubar.

Listboxes were chosen to handle queries related to Blown-up elements and parameters. As
it can be seen on Figure 4.7 four listboxes lays on the mainframe next to each other. The
left one stores the devices. This listbox can be filled up with the menubutton Refresh, which
asks the back-end to refresh its database from BUMP, then gives a getdevices command

onto the socket. On the figure two Blown-up device appears in the network.

After viewing the devices, we are able to select one of them. The selected item’s address is
sent back to the back-end after the command getapplications. The reply for the command
appears on the second listbox from the left by an application description and an application

identifier. Certainly only one device’s applications show up on this listbox.

CHAPTER 4. APPLICATIONS FOR BUMP 56

The third and the fourth listbox present the application pins. The third one stores output
pins, the fourth the input pins. As in the case of applications only one application’s pins
appear in these two listbox. They are listed by a getpins command completed with a device

address and an application ID.

In case of clicking onto one of the listed pins we can get the parameters of it. This is solved
with a popup window, where all user-important parameters appear. Actually this can be
seen on Figure 4.7.

-~ Control application v0.1 [=][a][x]

Fle Lookup 3essions Help |
Devices: Applications: Output pins: Input pins:

12 BN '\, [simple file service data output (download) pin | % [Simple file service data input (upload) pin A
1 KMM3 (Linux mp3 player acceptor) (5610; Simple file service command input pin

—" Output pin parameters IDICIIES)
TP-Type

PIN-Type
InputiOutput
Optional/Mandatory
Capacity

Pinname Simple file service data output (download) pin

I

7
Figure 4.7: Device, application and pin lookup on GUI

aaa | =

After we know the Blown-up services nearby, we can choose one or more applications we
want to use. To register and fulfil our request we should click on the menubar, and choose
the menubutton create. A popup window shows up (Figure 4.8) and the creation of our
session can begin. After selecting the first application by control-click, all of the pins appear
in the popup window. Each entry contains the device address, application identifier and
the name of the pin. The entries show that these pins are needed to be connected to some

other application’s pins. A label over the entry list make this known to us (Figure 4.8).

Before selecting another application we should check four important parameters of the
firstly selected application’s pins because these can carry information about the other
pin they should be linked to. The one that can help us much is the pin name, which

contains descriptive information, but not exact since the attachment of the pins happens

CHAPTER 4. APPLICATIONS FOR BUMP a7

- Control application v0.1 [=1[a][x]
Hle lookup Sessions Help |
Devices: Applications: Output pins: Input pins:

Simple file service data input (upload) pin A
Simple file service command input pin

|\, |Simple file service data output (download) pin

XMMS (Linux mp3 player acceptor) (5810

—" Create sessions

How find corresponding pins of an other application!

Device: 581Z App: 12 Pin: Simple file service data output (download) pin ---
Device: 5612 App: 12 Pin: Simple file service data input (upload) pin -—
Device: 5812 App: 12 Pin: Simple file service command input pin ---

Cancel | | Create |

]
~
~]
~

Figure 4.8: Creating a session, step 1

by checking pin type, transport type and direction. So on fast success we should check
also these pin parameters by clicking on pin listboxes. After we have known what kind of
pin we should search for, we can start browsing again among Blown-up elements. If we
have found a corresponding pin, we should control-click on its application. By selecting the
create window we can see that the other application’s pins also appeared in the window,
moreover a pin, that could be paired to a pin of the first application, has been attached to

each other (Figure 4.9).

As it can be seen on the Figure 4.9, one pin of the second application could not been
paired to any of the pins of the first application. So we have to continue browsing for an
appropriate application, to complete our session. After we managed to find one we should
control-click on it. In case the control application is able to attach the pins to each other
and no more application is requested to take part in the session, we are able to establish

the connection system by clicking on the create button.

After creating a few session, we can be informed about the operating ones, or we can
revoke them from our personal network. This can be achieved by clicking on show/delete
menubutton of sessions menu. A popup window appears (Figure 4.10) where we can find
our useful information and those buttons through which we can revoke our sessions and

navigate between them. Clicking on buttons ’«’ or '»’ step backward or forward among

CHAPTER 4. APPLICATIONS FOR BUMP 58

- Control application v0.1 [=1[a][x]
Hle lookup Sessions Help |
Devices: Applications: Output pins: Input pins:

12 Simple file service data output (upload) pin XMMS3 mp3 service pin
1 Simple file service command output pin Simple file service data input (download) pin

—* Create sessions

How find corresponding pins of an other application!

Device: 12 App: 5812 Pin: Simple file service data output (download) pin --- Device: 1 App: 1315 Pin: Simple file service daia input (download) pin
Device: 12 App: 5812 Pin: Simple file service data input {upload) pin --- Device: 1 App: 1315 Pin: Simple file service data output {upload) pin
Device: 12 App: 5812 Pin: Simple file service command input pin - Device: 1 App: 1315 Pin: Simple file service command output pin

Device: 1 App: 1315 Pin: XMMS mp3 service pin ---

7 7 7 7]

Figure 4.9: Creating a session, step 2

our established sessions reading the actually needed data from the memory of the front-
end. The front-end has collected all the available sessions from back-end when we pushed
show/delete button. If we got bored with one of our sessions we should select it, and click
on the delete button. In this case the session identifier of this session is sent to the back-end

after command delete so the control application revokes it from BUMP.

4.2.3 Summary of BUMP Control Plane

Some of the control functions of the Blown-up Micronet Protocol 's API operates almost
in the same manner as the user functions only their objectives differ. There are also

registering functions, one of them registers the other unregisters a control entity.

However a control application has registry functions, those functions that serve creating
sessions, are executed in a similar transaction manner as the user application register
functions. There is a transaction starter function, a finisher function. Between these
functions bump_bindPINs have to be called by which more pieces of data elements can be
registered. At user applications an application element and its pins can be registered, at
control applications a session and its pin pairs should be registered. The return value and

error handling happens in the same method.

CHAPTER 4. APPLICATIONS FOR BUMP 59

- Control application v0.1 [=1[a][x]

Hle lookup Sessions ﬂelpl

Devices: Applications: Output pins: Input pins:

12 N O N | . |Simple file service data output (download) pin Simple file service data input {upload) pin A
1 XMMS (Linux mp3 player acceptor) (5810 Simple file service command input pin

—* Show/Delete sessions

bind ID: 225301642

Device: 12 ApplID: 717 Pinname: Simple file service data output {download) pin ---- Device: 1 ApplD: 4588 Pinname: Simple file service data input (download) pin
Device: 12 ApplID: 717 Pinnami imple file service data input (upload) pi evice: 1 ApplD: 4588 Pinname: Simple file service data output (upload) pin
Device: 12 ApplID: 717 Pinname: Simple file service command input pin vice: 1 ApplD: 4588 Pinname: Simple file service command output pin

Device: 12 ApplD: 836 Pinname: XMM3 mp3 service acceptor pin ---- D 1 ApplD: 4588 Pinname: XMMS mp3 service pin

Delete |J | ok |

Figure 4.10: Session lookup and delete

The third group of functions serve the query procedures. They work in a very simple
manner. There is a reset function, which starts a query from the beginning, and there
is another function which returns data elements one by one. The latter should be being
called as far as it can give back no data. Blown-up applications and pins can be looked up

in this way. The bump_GetInfo query function returns application descriptions.

The last two control functions serve changing focuses. One of them changes focus on
local device (where the control application runs), while the other on remote device. The
main difference between them is that local focuschanges can be executed on every local
application, but remote focuschanges are restricted to only those applications that are

owned by the control application that wants to change focus.

Chapter 5

Analysis of BUMP

In the previous chapters I introduced the Blown-up technology. Blown-up makes easier the
work with small devices, expands their capabilities, and also makes easier the application
development in ad hoc networks. However Blown-up is a working system, some functions
are still missing. These functions are definitely necessary to use Blown-up in such an ad

hoc environment it was designed for.

Some of these functions are defined in Blown-up documentation, but have not been im-
plemented yet. One is the availability of optional pins. Optional pins are needed if there
are additional functions of a service, but optional pins are not necessary to be connected
to use the service. So a service can take part in a session without connecting its optional
pins. Actually T met this problem, when I implemented the mp3 server. I wanted to use
the file service in the mp3 service to download mp3 files but I had to register a redundant

upload pin (section 4.1).

Another function is the use of different transport types. Since Blown-up was designed to
operate over any type of transmission layers, it has to provide different transport methods
for applications running over the middleware. As several type of application could use

Blown-up hence it must be prepared to provide several type of dataflow.

There are also some properties of Blown-up that have been mentioned in chapter 3 but

they have not been designed yet into BUMP. These are authentication, authorization,

CHAPTER 5. ANALYSIS OF BUMP 61

encryption and standardization. The first three are needed to safely use services over
Blown-up. Certainly we can not afford anybody to intercept our data to violate our data
integrity or to modify our sessions. Standardization is one of the most important issue
about Blown-up. So far when I wrote about a given service (for example keyboard) I
supposed that for example a cellular phone’s keyboard service can be used by any type
of keyboard client. Probably in this case that the key code map of the different type of
devices also differs, so a standardized key code map must be agreed. Certainly not only
the keyboard but all other service must be standardized, to help Blown-up applications

determine the exact meaning of network data.

During the development of the applications I realized three important functions that should
be designed and implemented into Blown-up. When I mentioned the type of applications in
terms of Blown-up I described user and control applications. However I showed that there
can be a third type which uses user and control functions as well, but Blown-up qualifies
this, as a control application. Certainly it can happen that a user application with control
attribute (mixture application) runs on a device, that also runs another control application
by which the user established his sessions. In this case we can not afford the mixture
application to modify the established session of the "real” control application. Thus it
would be advisable to differentiate three type of application. User applications that have
no control permissions, user applications with control attribute that have restricted control
permissions, and "super user” control applications that have full control permissions. The
second feature that should be implemented is changing focus by channel groups. Let us
assume that we want to use the mp3 server, and download files from two different file
server. In this case the mp3 server has to be connected to both file server at the same
time, but certainly only one of them is in active state. The mp3 server does not see that
it is connected to two file servers. As was mentioned in section 4.1, three pins have to be
linked to use a file service (upload, download, command). If the user of the mp3 server
wants to switch between the two file server then he has to change focus on all three pins
else the other file service server will not work. So there are cases when a focus change on a
pin implies focus change on an other pin, hence Blown-up has to solve the focus change in
pin groups. The third feature that should be implemented is the opportunity of modifying

sessitons by pins. In the current implementation sessions can be built up and torn down.

CHAPTER 5. ANALYSIS OF BUMP 62

In case of a service falls out of a session, the whole session disconnects. Some mechanism
should be built into Blown-up that allows the search of a service which is compatible with
the failed service. By the aid of this mechanism we could be able to continue the usage of

the session with the new service.

Future Work

Blown-up could be a part of a system that is able to create system support for pervasive
applications. Certainly not only the above mentioned functions have to be implemented to
achieve this. Many special features are needed to make Blown-up appropriate for pervasive
applications. One of them is the support of mobile code. If we want to use a service for that
we does not have the client program, we should be able to download one from the server.
For the sake of the solution of this problem, the device, which runs the server program,

should store many type of client programs to support the user with an appropriate one.

Another Blown-up future work could be the support of session migration. This means, that
the user and his control application from which he initiated his sessions, moves away from
his original place, and from the used services as well. As the control application moves, it
should be able to search for corresponding services nearby the user’s actual position. The
control application should be able to rebuild the user’s sessions if it manages to find other

corresponding services. In other words the session follows the user.

My future work would be to complete my applications and prepare them for safe usage.
Since I was focusing on creating sessions that are interesting in terms of Blown-up, some

functions are missing from the user and control applications.

Further future work could be to enhance my applications to use the functions of on-
developed Blown-up. It is also important to develop more Blown-up applications and

sessions that effectively represent Blown-up abilities.

Chapter 6

Conclusion

In my thesis I have introduced pervasive or in another name ubiquitous computing. This
field of computer technology set itself an aim to change people’s notion of the world of
computers. There are still many problems that have to be solved to overcome the difficulties
raised by ubiquitous computing, but the research is underway. In my thesis I have presented
these difficulties, and the ideas of researchers how the difficulties could be solved. I have
showed that there is a need for a system that supports the development of pervasive

applications.

I have introduced the Blown-up distributed service access technology. I have described
the basic notions of Blown-up, a scenario that showes the abilities of Blown-up and I have
presented its architecture that makes possible the realization of Blown-up’s goals. I have
described the application programming interface of Blown-up Micronet Protocol that helps

in making applications Blown-up compatible.

I have introduced a Blown-up session that can be built up of a mp3 client, a mp3 server
and a file server. This session could be called as an mp3 session that allows running the
applications of the session on different devices with the aid of Blown-up. I also presented a
control application and its graphical user interface, that helps users easily create Blown-up

sessions.

Finally T have collected those features of Blown-up that should need correction or fur-

CHAPTER 6. CONCLUSION 64

ther development, in order to make this middleware more useful. I have presented those
properties of BUMP that should only be implemented: the optional pins and the differ-
ent transport types. I have mentioned the properties the should be designed into BUMP:
authentication, authorization, encryption, standardization. I have also described those
features that should be modified as differentiation of applications, changing focus, and ses-
sion handling. I have also describe the possible Blown-up future work, that should enable

Blown-up to support pervasive applications.

Appendix A

API Functions and Structures

A.1 Description of API Functions

API functions | Description
function: bump_RegisterApplicationStart
parameters: string AppName, string AppDescr
return value: | success / failure
function: bump_RegisterPIN
parameters: struct PIN
return value: | success / failure
function: bump_RegisterApplicationEnd
parameters: -
return value: | success / failure
function: bump_SendData
parameters: string MyPINName, void* data, int length
return value: -1, if pin is not connected

0, if pin is disabled

>0, number of sent bytes

APPENDIX A. API FUNCTIONS AND STRUCTURES

66

function name:

bump_ReadData

parameters:

string MyPINName, void* buffer, int maxbufsize, int Wait

return value:

-1, if pin is not connected

>0, number of received bytes

function:

bump_RevokeService

parameters:

return value:

void

function:

bump_RegisterControlEntity

parameters:

string controlappname

return value:

success/failure

function:

bump_GetApplicationsReset

parameters:

return value:

void

function:

bump_GetApplications

parameters:

struct AppIltem*

return value:

0, if there is no more item

1, else
function: bump_GetPINsReset
parameters: struct Appltem
return value: void
function: bump_GetPINs
parameters: struct UserPINx*

return value:

0, if there is no more item

1, else
function: bump_GetInfo
parameters: struct Appltem, string info, int infolength
return value: int length
function: bump_CreateSessionStart
parameters: int numofpairs

return value:

-1 Failure / bindID

APPENDIX A. API FUNCTIONS AND STRUCTURES

67

function:

bump_BindPINs

parameters:

struct PINPair, int bindID

return value:

success / failure

function:

bump_CreateSessionEnd

parameters:

int bindID

return value:

success / failure

function:

bump_ChangeRemoteFocus

parameters:

address Addr, int AppID, string MyPINName

return value:

success / failure

function:

bump_ChangeLocalFocus

parameters:

int AppID, string MyPINName

return value:

success / failure

function:

bump_UnRegisterControlEntity

parameters:

return value:

void

APPENDIX A. API FUNCTIONS AND STRUCTURES

68

A.2 Description of API Structures

API structures | Description

structure: PIN

elements: enum TP-Type, int Pin-Type, bool I/0, bool 0/M,
int Priority, int Capacity, string MyPINName

structure: UserPIN

elements: enum TP-Type, int Pin-Type, bool I/0, bool 0/M,
int Capacity, string MyPINName

structure: AppItem

elements: address ServiceAddr, int ServiceAppID

structure: PINPair

elements: addr LinklAddr, addr Link2Addr, int Link1AppID

addr Link2AppID, string Link1MyPINName,

string Link2MyPINName

Bibliography

[TDK2002] G. Biczok, K. Fodor, B. Kovacs, A. Szabo: Blown-up rendszer tervezése és megualdsitisa,
Advisors: M. Ronai, Z. Turanyi, A. Valko, Students’ Scientific Conference, November 2002.

[Fodor2003] K. Fodor: Implementation of a Protocol Stack for Personal Area Networks, Master’s Thesis,
May 2003

[Weiser91] Mark Weiser: "The Computer for the 21st Century”, Scientific American, September 1991.

[Weiser93] Mark Weiser: "Some Computer Science Issues in Ubiquitous Computing”, Communications of

the ACM, July 1993.
[Gilder93] George Gilder: "Dark Fibre, Dark Network”, Forbes ASAP, December 1993.

[Tatai97] P. Tatai: ”Open Vocabulary Speech Recognition - Brief State Report on a Research Project”,
Proceedings of the Polish-Czech-Hungarian Workshop on Circuits Theory, Signal Processing and
Applications, September 3-7, 1997, Budapest, pp. 52-57.

[OGN92] G. Olaszy, G. Gordos and G. Németh: "The MULTIVOX multilingual text-to-speech converter”,
in: G. Bailly, C. Benoit and T. Sawallis (eds.): Talking machines: Theories, Models and Applications,
Elsevier, 1992, pp. 385-411.

[RC93] T. Roska and L. O. Chua: "The CNN Universal Machine: An analogic array computer”, IEEE
Transactions on Circuits and Systems-II, Vol. 40, pp. 163-173, March 1993.

[WLANO99| IEEE Std 802.11, 1999 Edition, http://standards.ieee.org/catalog/olis/lanman.html
[HLAN2| HiperLAN2 overview, http://www.hiperlan2.com/WhyHiperlan2.asp

[JHO8] Jaap Hartsen: "BLUETOOTH - The universal radio interface for ad hoc, wireless connectivity”,
Ericsson Review No. 3, 1998.

[BBSpec| Bluetooth Baseband Specification, http://www.bluetooth.com

[Karn90] Phil Karn: "MACA - A New Channel Access Method for Packet Radio”, appeared in the pro-
ceedings of the 9th ARRL Computer Networking Conference, London, Ontario, Canada, 1990.

[DPROO] S. Das, C. Perkins, E. Royer: "Performance Comparison of Two On-demand Ad hoc Routing

Algorithms”, Proceedings of the IEEE Conference on Computer Communication, March 2000.

PB94| C. Perkins, P. Bhagwat: “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV
8
for Mobile Computers”, SIGCOMM’94.

[PCI7] Vincent D. Park and M. Scott Corson: ”A Highly Adaptive Distributed Routing Algorithm for
Mobile Wireless Networks”, Proceedings of IEEE INFOCOM 97, Kobe, Japan (April 1997.)

[BMJHJ98] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, J. Jetcheva: "A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols”, MobiCom ’98.

[McCrory00] Anne McCrory: “Ubiquitous? Pervasive? Sorry, they don’t compute”, Computer World,
March 2000.

[Satya01] M. Satyanarayanan: "Pervasive Computing: Vision and Challenges”, IEEE Personal Communi-

cations, August 2001.

[BPT96] P. Bhagwat, C. Perkins, S. Tripathi: “Network Later Mobility: an Architecture and Survey”,

Personal Communications Magazine, Vol. 3, No. 3, June 1996.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, R. Katz: "Improving TCP/IP Performance Over Wireless
Networks”, MobiCom ’95.

[Oxygen02] ”"MIT Project Ozygen”, Online Documentation,
http://oxygen.lcs.mit.edu/publications/Oxygen.pdf

[EHAB99] M. Esler, J. Hightower, T. Anderson, G. Borriello "Nezt Century Challenges: Data-Centric
Networking for Invisible Computing - The Portolano Project at the University of Washington”, MO-
BICOM’99.

[GRIMM et al.01] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, S. Gribble, T. Anderson, B.
Bershad, G. Borriello, D. Wetherall. ”Programming for pervasive computing environments” Technical
report UW-CSE-01-06-01, University of Washington, Department of Computer Science and Engineer-
ing, June 2001.

